Scientific Papers

Neocortex neurogenesis and maturation in the African greater cane rat | Neural Development


  • Adu EK, Yeboah S. On the use of the perineal stain as an index of sexual maturity and breeding condition in the male greater cane rat, Thryonomys swinderianus. Temminck Trop Anim Health Prod. 2003;35(5):433–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akpan MO, Samuel OM, Emikpe BO. Regional skin histomorphology in adult greater cane rats (Thryonomys swinderianus): a pilot study. Int J Vet Sci Med. 2018;6(2):219–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aluko FA, Salako AE, Ngere LO, Awojobi HA. Reproductive history of cane rat: a review of the reproduction and reproductive performance. J Agric Soc Res. 2014;14(1):109–15.


    Google Scholar
     

  • Álvarez-Hernán G, de Mera-Rodríguez JA, Hernández-Núñez I, Acedo A, Marzal A, Gañán Y, et al. Timing and distribution of mitotic activity in the retina during precocial and altricial modes of avian development. Front Neurosci. 2022;16:853544. https://doi.org/10.3389/fnins.2022.853544.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews MG, Subramanian L, Salma J, Kriegstein AR. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat Rev Neurosci. 2022;23(12):711–24. https://doi.org/10.1038/s41583-022-00631-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asibey EOA, Addo PG. The Grasscutter: A Promising Animal for Meat Production. In: Turnham D, editor. African Perspective, Practices and Policies Supporting Sustainable Development. Zimbabwe: Weaver press; 2000. p. 46.


    Google Scholar
     

  • Attardo A, Calegari F, Haubensak W, Wilsch-Bräuninger M, Huttner WB. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One. 2008;3(6):e2388. https://doi.org/10.1371/journal.pone.0002388.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barami K, Iversen K, Furneaux H, Goldman SA. Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. J Neurobiol. 1995;28(1):82–101. https://doi.org/10.1002/neu.480280108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barnes AP, Polleux F. Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci. 2009;32:347–81. https://doi.org/10.1146/annurev.neuro.31.060407.125536.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayatti N, Moss JA, Sun L, Ambrose P, Ward JFH, Lindsay S, et al. A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex. 2008;18(7):1536–48. https://doi.org/10.1093/cercor/bhm184.

    Article 
    PubMed 

    Google Scholar
     

  • Bernhardt R, Huber G, Matus A. Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum. J Neurosci. 1985;5(4):977–91. https://doi.org/10.1523/JNEUROSCI.05-04-00977.1985.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Ménard A, et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron. 2013;80(2):442–57. https://doi.org/10.1016/j.neuron.2013.09.032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, et al. Mother-young bonding: neurobiological aspects and maternal biochemical signaling in altricial domesticated mammals. Animals (Basel). 2023;13(3):532. https://doi.org/10.3390/ani13030532.

    Article 
    PubMed 

    Google Scholar
     

  • Bignami A, Dahl D. Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Res. 1973;49(2):393–402. https://doi.org/10.1016/0006-8993(73)90430-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brunjes PC, Korol DL, Stern KG. Prenatal neurogenesis in the telencephalon of the precocial mouse Acomys cahirinus. Neurosci Lett. 1989;107(1–3):114–9. https://doi.org/10.1016/0304-3940(89)90801-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byanet O, Ojo SA, Onyeanusi BI. Gross anatomical organization of the cerebellum of the grasscutter (Thryonomys swinderianus-Temminck, 1827). Ann of Biol Res. 2012;3:2755–62.


    Google Scholar
     

  • Carden MJ, Trojanowski JQ, Schlaepfer WW, Lee VM. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci. 1987;7(11):3489–504. https://doi.org/10.1523/JNEUROSCI.07-11-03489.1987.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cárdenas A, Borrell V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol Life Sci. 2020;77(8):1435–60. https://doi.org/10.1007/s00018-019-03315-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charvet CJ, Striedter GF. Developmental Modes and Developmental Mechanisms can Channel Brain Evolution. Front Neuroanat. 2011;5:4. https://doi.org/10.3389/fnana.2011.00004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Kanai Y, Cowan NJ, Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature. 1992;360(6405):674–7. https://doi.org/10.1038/360674a0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Carlos JA, López-Mascaraque L, Valverde F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci. 1996;16(19):6146–56. https://doi.org/10.1523/JNEUROSCI.16-19-06146.1996.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeDiego I, Smith-Fernández A, Fairén A. Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci. 1994;6(6):983–97. https://doi.org/10.1111/j.1460-9568.1994.tb00593.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFelipe J, Alonso-Nanclares L, Arellano JI. Microstructure of the neocortex: Comparative aspects. J Neurocytol. 2002;31:299–316. https://doi.org/10.1023/A:1024130211265.

    Article 
    PubMed 

    Google Scholar
     

  • Dehay C, Kennedy H, Kosik KS. The outer subventricular zone and primate-specific cortical complexification. Neuron. 2015;85(4):683–94. https://doi.org/10.1016/j.neuron.2014.12.060.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Derrickson EM. Comparative reproductive strategies of altricial and precocial eutherian mammals. Funct Ecol. 1992;6:57–65. https://doi.org/10.2307/2389771.

    Article 

    Google Scholar
     

  • Dieterlen F. Comparative investigations on the ontogeny of spiny mice (Acomys) and brown rats (Rattus norvegicus): contributions to the pre-predatory problem in rodents. Z Säugetierkd. 1963;28:193–227.


    Google Scholar
     

  • D’Udine B, Gozzo S. Archicortex and neocortex in the precocial murid Acomys cahirinus. A comparison with two altricial species: Mus musculus and Rattus norvegicus. Int J Neurosci. 1983;20(3–4):255–63. https://doi.org/10.3109/00207458308986579.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eben AB. Grasscutter: importance, habitat, characteristics, feed and feeding, breeding and diseases. In: programme organized by Centre for Biodiversity Utilization and Development (CBUD). Kumasi, Ghana, 2004. 1–6.

  • Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res. 2000;25(9–10):1439–51. https://doi.org/10.1023/a:1007677003387.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci. 2005;25(1):247–51. https://doi.org/10.1523/JNEUROSCI.2899-04.2005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010;13(6):690–9. https://doi.org/10.1038/nn.2553.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fietz SA, Huttner WB. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol. 2011;21 Suppl 1:23–35. https://doi.org/10.1016/j.conb.2010.10.002.

    Article 
    CAS 

    Google Scholar
     

  • Florio M, Huttner WB. Neural progenitors, neurogenesis and the evolution of the neocortex. Development. 2014;141(11):2182–94. https://doi.org/10.1242/dev.090571.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foran DR, Peterson AC. Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J Neurosci. 1992;12:4890–7. https://doi.org/10.1523/JNEUROSCI.12-12-04890.1992.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gertz CC, Lui JH, LaMonica BE, Wang X, Kriegstein AR. Diverse behaviors of outer radial glia in developing ferret and human cortex. J Neurosci. 2014;34(7):2559–70. https://doi.org/10.1523/JNEUROSCI.2645-13.2014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert SF. Neuronal specification and axonal specificity. In: Sunderland MA, editor. Developmental Biology. 6th edition. Sinauer Associates; 2000. Available from:
    https://www.ncbi.nlm.nih.gov/books/NBK10108/.

  • Gilbert SF. (2010). Developmental biology. Ninth edition. Sinauer Associate, Inc. ISBN 9780878933846

  • Glatzle M, Hoops M, Kauffold J, Seeger J, Fietz SA. Development of deep and upper neuronal layers in the domestic cat, sheep and pig neocortex. Anat Histol Embryol. 2017;46(4):397–404. https://doi.org/10.1111/ahe.12282.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Götz M, Stoykova A, Gruss P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron. 1998;21:1031–44. https://doi.org/10.1016/S0896-6273(00)80621-2.

    Article 
    PubMed 

    Google Scholar
     

  • Gozzo S, Dimitrieva N, Iacopino C, D’udine B. A comparative study of mossy fiber distribution in the brain of the precocial Acomys cahirinus and of the altricial Rattus norvegicus: neuroanatomical bases and behavioral correlates. Int J Neurosci. 1985;28:163–72.
    https://doi.org/10.3109/00207458508985387.

  • Hammond C. Cellular and Molecular Neurophysiology. London: Academic Press; 2008.


    Google Scholar
     

  • Han W, Sestan N. Cortical projection neurons: sprung from the same root. Neuron. 2013;80:1103–5. https://doi.org/10.1016/j.neuron.2013.11.016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen DV, Lui JH, Flandin P, Yoshikawa K, Rubenstein JL, Alvarez-Buylla A. Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminences. Nat Neurosci. 2013;16(11):1576–87. https://doi.org/10.1038/nn.3541.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554–61. https://doi.org/10.1038/nature08845.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci. 2004;101:3196–201. https://doi.org/10.1073/pnas.0308600100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He S. Shi SH. Lineage-Dependent Electrical Synapse Formation in the Mammalian Neocortex. In: Jian Jing, editor. Network Functions and Plasticity. London: Academic Press; 2017. 321–48. https://doi.org/10.1016/B978-0-12-803471-2.00014-X.

  • Hendry SH, Schwark HD, Jones EG, Yan J. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci. 1987;7:1503–19. https://doi.org/10.1523/JNEUROSCI.07-05-01503.1987.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hevner RF. Intermediate progenitors and Tbr2 in cortical development. J Anat. 2019;235:616–25. https://doi.org/10.1111/joa.12939.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hevner RF, Shi L, Justice N, Hsueh YP, Sheng M, Smiga S, et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron. 2001;29:353–66. https://doi.org/10.1016/S0896-6273(01)00211-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoshiba Y, Toda T, Ebisu H, Wakimoto M, Yanagi S, Kawasaki H. Sox11 balances dendritic morphogenesis with neuronal migration in the developing cerebral cortex. J Neurosci. 2016;36(21):5775–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, He W, Tang T, Qiu M. Immunological markers for central nervous system glia. Neurosci Bull. 2023;39(3):379–92. https://doi.org/10.1007/s12264-022-00938-2.

    Article 
    PubMed 

    Google Scholar
     

  • Ibe CS, Ojo SA, Salami SO, Ayo JO, Ikpegbu E. Cerebellar gross anatomy of the African grasscutter (Thryonomys swinderianus – Temminck, 1827) during foetal and postnatal development. Vet arhiv. 2019;89:559–77.

    Article 
    CAS 

    Google Scholar
     

  • Ibe CS, Ojo SA, Salami OS. Cytoarchitecture and immunolocalisation of BDNF in the somatosensory cortex of the African grasscutter (Thryonomys swinderianus). Indian J Vet Res. 2016;25:1–11.


    Google Scholar
     

  • Ibe C, Salami S, Wanmi N. Brain size of the african grasscutter (Thryonomys Swinderianus, Temminck, 1827) at defined postnatal periods. Folia Vet. 2017;61(4):5–11. https://doi.org/10.1515/fv-2017-0031.

    Article 

    Google Scholar
     

  • Ibe C, Salami S, Ikpegbu E, Adam M. Histology and brain derived neurotrophic factor immunoreaction of the neurons in the corpora quadrigemina of the african grasscutter (Thryonomys swinderianus – Temminck, 1827). Agricultura Tropica et Subtropica. 2019;52(2):49–58. https://doi.org/10.2478/ats-2019-0006.

    Article 

    Google Scholar
     

  • Ibe CS. (2016). Structural and immunohistochemical studies of prenatal and postnatal brain development in the african grasscutter (Thryonomys swinderianus – Temminck, 1827). PhD Thesis, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.

  • Jori F, Edderai D, Houben P. Potential of rodents for minilivestock in Africa. In: Paoletti MG, editor. ecological implications of mini-livestock; rodents, frogs, snails and insects for sustainable development. Enfield: Science Publications; 2005. p. 25–47.


    Google Scholar
     

  • Kálmán M, Hajós F. Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. I Forebrain Exp Brain Res. 1989;78(1):147–63. https://doi.org/10.1007/BF00230694.

    Article 
    PubMed 

    Google Scholar
     

  • Kalusa M, Heinrich MD, Sauerland C, Morawski M, Fietz SA. Developmental differences in neocortex neurogenesis and maturation between the altricial Dwarf Rabbit and Precocial Guinea Pig. Front Neuroanat. 2021;15:678385. https://doi.org/10.3389/fnana.2021.678385.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex. 2012;22(2):469–81. https://doi.org/10.1093/cercor/bhr301.

    Article 
    PubMed 

    Google Scholar
     

  • Kosodo Y, Toida K, Dubreuil V, Alexandre P, Schenk J, Kiyokage E, et al. Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J. 2008;27(23):3151–63. https://doi.org/10.1038/emboj.2008.227.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramer LA, Greek R. Human stakeholders and the use of animals in drug development. Bus Soc Rev. 2018;123(1):3–58.

    Article 

    Google Scholar
     

  • Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84. https://doi.org/10.1146/annurev.neuro.051508.135600.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriegstein A, Noctor S, Martínez-Cerdeño V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci. 2006;7(11):883–90. https://doi.org/10.1038/nrn2008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La Manno G, Siletti K, Furlan A, et al. Molecular architecture of the developing mouse brain. Nature. 2021;596:92–6. https://doi.org/10.1038/s41586-021-03775-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lariviere RC, Julien JP. Functions of intermediate filaments in neuronal development and disease. J Neurobiol. 2004;58(1):131–48. https://doi.org/10.1002/neu.10270.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci. 1999;19(18):7881–8. https://doi.org/10.1523/JNEUROSCI.19-18-07881.1999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letinic K, Zoncu R, Rakic P. Origin of GABAergic neurons in the human neocortex. Nature. 2002;417(6889):645–9. https://doi.org/10.1038/nature00779.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewitus E, Kelava I, Kalinka AT, Tomancak P, Huttner WB. An adaptive threshold in mammalian neocortical evolution. PLoS Biol. 2014;12(11):e1002000. https://doi.org/10.1371/journal.pbio.1002000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63(5):499–509. https://doi.org/10.1093/jnen/63.5.499.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lossi L, Coli A, Giannessi E, Stornelli MR, Marroni P. Cell proliferation and apoptosis during histogenesis of the guinea pig and rabbit cerebellar cortex. Ital J Anat Embryol. 2002;107(2):117–25.

    PubMed 

    Google Scholar
     

  • Lv X, Ren SQ, Zhang XJ, et al. TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11854-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyck L, Dalmau I, Chemnitz J, Finsen B, Schrøder HD. Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histochem Cytochem. 2008;56(3):201–21. https://doi.org/10.1369/jhc.7A7187.2007.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manuel MN, Mi D, Mason JO, Price DJ. Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci. 2015;9:70. https://doi.org/10.3389/fncel.2015.00070.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marín O, Rubenstein JL. Cell migration in the forebrain. Annu Rev Neurosci. 2003;26:441–83. https://doi.org/10.1146/annurev.neuro.26.041002.131058.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshall JJ, Mason JO. Mouse vs man: Organoid models of brain development & disease. Brain Res. 2019;1724: 146427. https://doi.org/10.1016/j.brainres.2019.146427.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin RD, Maclarnon AM. Gestation period, neonatal size and maternal investment in placental mammals. Nature. 1985;313:220–3. https://doi.org/10.1038/313220a.

    Article 

    Google Scholar
     

  • Martínez-Cerdeño V, Cunningham CL, Camacho J, Antczak JL, Prakash AN, Cziep ME, et al. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents. PLoS ONE. 2012;7(1):e30178. https://doi.org/10.1371/journal.pone.0030178.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maslova MN, Ozirskaia EV. External brain acetylcholinesterase in the ontogeny of precocial and altricial rodents. Zh Evol Biokhim Fiziol. 1979;15(1):48–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron. 2001;31(5):727–41. https://doi.org/10.1016/s0896-6273(01)00420-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development. 2004;131(13):3133–45. https://doi.org/10.1242/dev.01173.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moe MC, Varghese M, Danilov AI, Westerlund U, Ramm-Pettersen J, Brundin L, et al. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain. 2005;128(Pt 9):2189–99. https://doi.org/10.1093/brain/awh574.

    Article 
    PubMed 

    Google Scholar
     

  • Molnár Z, Clowry GJ, Šestan N, Alzu’bi A, Bakken T, Hevner R, et al. New insights into the development of the human cerebral cortex. J Anat. 2019;235(3):432–51. https://doi.org/10.1111/joa.13055.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007;8(6):427–37. https://doi.org/10.1038/nrn2151.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montiel JF, Vasistha NA, Garcia-Moreno F, Molnár Z. From sauropsids to mammals and back: New approaches to comparative cortical development. J Comp Neurol. 2016;524(3):630–45. https://doi.org/10.1002/cne.23871.

    Article 
    PubMed 

    Google Scholar
     

  • Mustapha OA, Olude MA, Ezekiel S, Seeger J, Fietz SA, Olopade JO. Developmental horizons in the pre-natal development of the Greater cane rat (Thryonomys swinderianus). Anat Histol Embryol. 2019;48(5):486–97. https://doi.org/10.1111/ahe.12470.

    Article 
    PubMed 

    Google Scholar
     

  • Mustapha OA, Teriba EE, Ezekiel OS, Olude AM, Akinloye AK, Olopade JO. A study of scientific publications on the greater cane rat (Thryonomys swinderianus, Temminck 1827). Animal Model Exp Med. 2020;3(1):40–6. https://doi.org/10.1002/ame2.12103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mustapha O, Ezekiel O, Olaolorun F, Awala-Ajakaiye M, Popoola E, Olude M, et al. Morphological Characterization of the Developing Greater Cane Rat (Thryonomys swinderianus) Brain. Dev Neurosci. 2020;42(2–4):114–23. https://doi.org/10.1159/000510848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mustapha OA, Sulaimon ST, Olude MA, Aderounmu OA, Okandeji ME, Akinloye AK, et al. Anatomical Studies on the Spinal Cord of the GCR (Thryonomys swinderianus, Temminck) II: Histomorphology and Spinal Tracings. Nig Vet J. 2017;38(2):129–39.


    Google Scholar
     

  • Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004;7(2):136–44. https://doi.org/10.1038/nn1172.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowakowski RS, Caviness VS Jr, Takahashi T, Hayes NL. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results Probl Cell Differ. 2002;39:1–25. https://doi.org/10.1007/978-3-540-46006-0_1.

    Article 
    PubMed 

    Google Scholar
     

  • Okano HJ, Darnell RB. A hierarchy of Hu RNA binding proteins in developing and adult neurons. J Neurosci. 1997;17(9):3024–37. https://doi.org/10.1523/JNEUROSCI.17-09-03024.1997.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okorafor KA, Okete JA, Andem AB, Eleng IE. Assessment of grasscutters’ (Thryonomys swinderianus) sellers and hunters conservation knowledge, rate of hunting and methods of hunting in Oyo State. Nigeria Eur J Zool Res. 2012;1:86–92.


    Google Scholar
     

  • Ostrem B, Di Lullo E, Kriegstein A. oRGs and mitotic somal translocation – a role in development and disease. Curr Opin Neurobiol. 2017;42:61–7. https://doi.org/10.1016/j.conb.2016.11.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parnavelas JG. The origin of cortical neurons. Braz J Med Biol Res. 2002;35(12):1423–9. https://doi.org/10.1590/s0100-879×2002001200003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrin S. Preclinical research: Make mouse studies work. Nature. 2014;507(7493):423–5. https://doi.org/10.1038/507423a.

    Article 
    PubMed 

    Google Scholar
     

  • Pintor A, Alleva E, Michalek H. Postnatal maturation of brain cholinergic systems in the precocial murid Acomys cahirinus: comparison with the altricial rat. Int J Dev Neurosci. 1986;4(4):375–82. https://doi.org/10.1016/0736-5748(86)90055-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polleux F, Dehay C, Moraillon B, Kennedy H. Regulation of neuroblast cell-cycle kinetics plays a crucial role in the generation of unique features of neocortical areas. J Neurosci. 1997;17(20):7763–83. https://doi.org/10.1523/JNEUROSCI.17-20-07763.1997.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal Migration During Development of the Cerebellum. Front Cell Neurosci. 2018;12:484. https://doi.org/10.3389/fncel.2018.00484.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145(1):61–83. https://doi.org/10.1002/cne.901450105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18(9):383–8. https://doi.org/10.1016/0166-2236(95)93934-p.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rash BG, Duque A, Morozov YM, Arellano JI, Micali N, Rakic P. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proc Natl Acad Sci U S A. 2019;116(14):7089–94. https://doi.org/10.1073/pnas.1822169116.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reillo I, de Juan RC, García-Cabezas MÁ, Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex. 2011;21(7):1674–94. https://doi.org/10.1093/cercor/bhq238.

    Article 
    PubMed 

    Google Scholar
     

  • Römer S, Bender H, Knabe W, Zimmermann E, Rübsamen R, Seeger J, et al. neural progenitors in the developing neocortex of the Northern Tree Shrew (Tupaia belangeri) show a closer relationship to gyrencephalic primates than to lissencephalic rodents. Front Neuroanat. 2018;12:29. https://doi.org/10.3389/fnana.2018.00029.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauerland C, Menzies BR, Glatzle M, Seeger J, Renfree MB, Fietz SA. The basal radial glia occurs in marsupials and underlies the evolution of an expanded neocortex in therian mammals. Cereb Cortex. 2018;28(1):145–57. https://doi.org/10.1093/cercor/bhw360.

    Article 
    PubMed 

    Google Scholar
     

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt AF, Kannan PS, Chougnet CA, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13(1):238. https://doi.org/10.1186/s12974-016-0706-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001.

    Article 
    PubMed 

    Google Scholar
     

  • Shaw G, Weber K. Differential expression of neurofilament triplet proteins in brain development. Nature. 1982;298(5871):277–9. https://doi.org/10.1038/298277a0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simó S, Cooper JA. Regulation of dendritic branching by Cdc42 GAPs. Genes Dev. 2012;26(15):1653–8. https://doi.org/10.1101/gad.199034.112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skinner JD, Chimimba CT. The Mammals of the Southern African Subregion. 3rd ed. Cambridge: Cambridge University Press; 2005. p. 93–6.

    Book 

    Google Scholar
     

  • Smart IH, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex. 2002;12(1):37–53. https://doi.org/10.1093/cercor/12.1.37.

    Article 
    PubMed 

    Google Scholar
     

  • Stepien BK, Naumann R, Holtz A, Helppi J, Huttner WB, Vaid S. Lengthening Neurogenic Period during Neocortical Development Causes a Hallmark of Neocortex Expansion. Curr Biol. 2020;30(21):4227-37.e5. https://doi.org/10.1016/j.cub.2020.08.046.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stepien BK, Vaid S, Huttner WB. Length of the Neurogenic Period-A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Front Cell Dev Biol. 2021;9:676911. https://doi.org/10.3389/fcell.2021.676911. (Published 2021 May 13).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Supèr H, Del Río JA, Martínez A, Pérez-Sust P, Soriano E. Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb Cortex. 2000;10(6):602–13. https://doi.org/10.1093/cercor/10.6.602.

    Article 
    PubMed 

    Google Scholar
     

  • Tabata H, Nakajima K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci. 2003;23(31):9996–10001. https://doi.org/10.1523/JNEUROSCI.23-31-09996.2003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi T, Nowakowski RS, Caviness VS Jr. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci. 1996;16(19):6183–96. https://doi.org/10.1523/JNEUROSCI.16-19-06183.1996.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi T, Nowakowski RS, Caviness VS Jr. The mathematics of neocortical neuronogenesis. Dev Neurosci. 1997;19(1):17–22. https://doi.org/10.1159/000111179.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y. The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol. 2002;12(13):1157–63. https://doi.org/10.1016/s0960-9822(02)00926-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tardif S, Carville A, Elmore D, Williams LE, Rice K. Reproduction and Breeding of Nonhuman Primates. Nonhuman Primates Biomed Res. 2012;197–249.
    https://doi.org/10.1016/B978-0-12-381365-7.00008-X.

  • Tessitore C, Brunjes PC. A comparative study of myelination in precocial and altricial murid rodents. Brain Res. 1988;471(1):139–47. https://doi.org/10.1016/0165-3806(88)90159-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toma K, Hanashima C. Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front Neurosci. 2015;9:274. https://doi.org/10.3389/fnins.2015.00274. (Published 2015 Aug 11).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toma K, Kumamoto T, Hanashima C. The timing of upper-layer neurogenesis is conferred by sequential derepression and negative feedback from deep-layer neurons. J Neurosci. 2014;34(39):13259–76. https://doi.org/10.1523/JNEUROSCI.2334-14.2014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tömböl T. Comparative study of the early postnatal chicken and pigeon brain. A Golgi-study of telencephalon and cerebellum. J Hirnforsch. 1988;29(5):557–67.

    PubMed 

    Google Scholar
     

  • Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol. 2022;10: 892922. https://doi.org/10.3389/fcell.2022.892922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villalba A, Götz M, Borrell V. The regulation of cortical neurogenesis. Curr Top Dev Biol. 2021;142:1–66. https://doi.org/10.1016/bs.ctdb.2020.10.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werneburg I, Laurin M, Koyabu D, Sánchez-Villagra MR. Evolution of organogenesis and the origin of altriciality in mammals. Evol Dev. 2016;18(4):229–44. https://doi.org/10.1111/ede.12194.

    Article 
    PubMed 

    Google Scholar
     

  • Wolpert L, Jessell T, Lawrence P, Meyerowitz E, Robertson E, Smith J. Principles of Development. Oxford: Oxford University Press; 2007.


    Google Scholar
     

  • Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci. 2006;7(9):687–96. https://doi.org/10.1038/nrn1954.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong FK, Fei JF, Mora-Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 expression generates primate-like basal radial glia in developing mouse neocortex. PLoS Biol. 2015;13(8):e1002217. https://doi.org/10.1371/journal.pbio.1002217.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. Modeling transformations of neurodevelopmental sequences across mammalian species. J Neurosci. 2013;33(17):7368–83. https://doi.org/10.1523/JNEUROSCI.5746-12.2013.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Li Z, Liu G, Li X, Yang Z. Developmental origins of human cortical oligodendrocytes and astrocytes. Neurosci Bull. 2022;38:47–68. https://doi.org/10.1007/s12264-021-00759-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zecevic N, Andjelkovic A, Matthieu J, Tosic M. Myelin basic protein immunoreactivity in the human embryonic CNS. Brain Res Dev Brain Res. 1998;105(1):97–108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang M, Ergin V, Lin L, Stork C, Chen L, Zheng S. Axonogenesis is coordinated by neuron-specific alternative splicing programming and splicing regulator PTBP2. Neuron. 2019;101(4):690-706.e10. https://doi.org/10.1016/j.neuron.2019.01.022.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link