Scientific Papers

Effects of autologous serum on TREM2 and APOE in a personalized monocyte-derived macrophage assay of late-onset Alzheimer’s patients | Immunity & Ageing


  • Prince M. World Alzheimer Report 2015: The Global Impact of Dementia | Alzheimer’s Disease International. World Alzheimer’s Report. 2015.

  • Sheppard O., & Coleman M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis. Alzheimer’s Disease: Drug Discovery. 2020:1–22. https://doi.org/10.36255/EXONPUBLICATIONS.ALZHEIMERSDISEASE.2020.CH1.

  • Talwar P., Sinha J., Grover S., Rawat C., Kushwaha S., Agarwal R., Taneja V., & Kukreti R. Dissecting Complex and Multifactorial Nature of Alzheimer’s Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Molecular Neurobiology 2015 ;53(7): 4833–4864. https://doi.org/10.1007/S12035-015-9390-0.

  • Heneka M. T., O’Banion M. K., Terwel D., & Kummer M. P. Neuroinflammatory processes in Alzheimer’s disease. J Neural Trans 2010;117(8):117(8):919–947. https://doi.org/10.1007/S00702-010-0438-Z.

  • Regen F., Hellmann-Regen J., Costantini E., & Reale M. Neuroinflammation and Alzheimer’s Disease: Implications for Microglial Activation. Current Alzheimer Research. 2017;14(11). https://doi.org/10.2174/1567205014666170203141717.

  • Licastro F, Candore G, Lio D, Porcellini E, Colonna-Romano G, Franceschi C, Caruso C. Innate immunity and inflammation in ageing: a key for understanding age-related diseases. Immun Ageing. 2005;2:8. https://doi.org/10.1186/1742-4933-2-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw A. C., Goldstein D. R., & Montgomery R. R. Age-dependent dysregulation of innate immunity. Nature Publishing Group. 2013;13. https://doi.org/10.1038/nri3547.

  • Xia X., Jiang Q., McDermott J., & Han J. D. J. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell. 2018;17(5). https://doi.org/10.1111/ACEL.12802.

  • Muñoz-Castro C, Mejias-Ortega M, Sanchez-Mejias E, Navarro V, Trujillo-Estrada L, Jimenez S, Garcia-Leon JA, Fernandez-Valenzuela JJ, Sanchez-Mico MV, Romero-Molina C, Moreno-Gonzalez I, Baglietto-Vargas D, Vizuete M, Gutierrez A, Vitorica J. Monocyte-derived cells invade brain parenchyma and amyloid plaques in human Alzheimer’s disease hippocampus. Acta Neuropathol Commun. 2023;11(1):1–21. https://doi.org/10.1186/S40478-023-01530-Z/FIGURES/6.

    Article 

    Google Scholar
     

  • Nevalainen T, Autio A, Hurme M. Composition of the infiltrating immune cells in the brain of healthy individuals: effect of aging. Immunity and Ageing. 2022;19(1):1–8. https://doi.org/10.1186/S12979-022-00302-Y/TABLES/2.

    Article 

    Google Scholar
     

  • Silvin A., Uderhardt S., Piot C., Da Mesquita S., Yang K., Geirsdottir L., Mulder K., Eyal D., Liu Z., Bridlance C., Thion M. S., Zhang X. M., Kong W. T., Deloger M., Fontes V., Weiner A., Ee R., Dress R., Hang J. W., … Ginhoux F. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity. 2022;55(8):1448–1465.e6. https://doi.org/10.1016/J.IMMUNI.2022.07.004.

  • Yan P., KimK. W., Xiao Q., Ma X., Czerniewski L. R., Liu H., Rawnsley D. R., Yan Y., RandolphG. J., Epelman S., Lee J. M., & Diwan A. Peripheral monocyte-derived cells counter amyloid plaque pathogenesis in a mouse model of Alzheimer’s disease.  J Clin Invest. 2022;132(11). https://doi.org/10.1172/JCI152565.

  • Ju H, Woo Park K, Kim I, Cave JW, Cho S. Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia. J Neuroinflammation. 2022;19:190. https://doi.org/10.1186/s12974-022-02552-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen I. E., Savage J. E., Watanabe K., Bryois J., Williams D. M., Steinberg S., Sealock J., Karlsson I. K., Hägg S., Athanasiu L., Voyle N., Proitsi P., Witoelar A., Stringer S., Aarsland D., Almdahl I. S., Andersen F., Bergh S., Bettella F., … Posthuma D. (2019). Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet, 51(3), 404–413. https://doi.org/10.1038/S41588-018-0311-9.

  • Wightman D. P., Jansen I. E., Savage J. E., Shadrin A. A., Bahrami S., Holland D., Rongve A., Børte S., Winsvold B. S., Drange O. K., Martinsen A. E., Skogholt A. H., Willer C., Bråthen G., Bosnes I., Nielsen J. B., Fritsche L. G., Thomas L. F., Pedersen L. M., … Posthuma D. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53(9):1276–1282. https://doi.org/10.1038/s41588-021-00921-z.

  • Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18. https://doi.org/10.1038/nrneurol.2012.263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X, Rademakers R, Kang SS, Xu H, Younkin S, Das P, Fryer JD, Bu G. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J Biol Chem. 2015;290(43):26043–50. https://doi.org/10.1074/JBC.M115.679043.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y., & Holtzman D. M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nature Reviews Immunology 2018;18(12):759–772. https://doi.org/10.1038/s41577-018-0051-1.

  • Wolfe C. M., Fitz N. F., Nam K. N., Lefterov I., & Koldamova R. The Role of APOE and TREM2 in Alzheimer′s Disease—Current Understanding and Perspectives. Int J Mole Sci.  2019; 20(1). https://doi.org/10.3390/IJMS20010081.

  • Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I. A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell. 2017;169(7):1276–1290.e17. https://doi.org/10.1016/J.CELL.2017.05.018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee CYD, Daggett A, Gu X, Jiang LL, Langfelder P, Li X, Wang N, Zhao Y, Park CS, Cooper Y, Ferando I, Mody I, Coppola G, Xu H, Yang XW. Elevated trem2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron. 2018;97(5):1032–1048.e5. https://doi.org/10.1016/J.NEURON.2018.02.002/ATTACHMENT/5A43D1CE-64DB-4F88-AFE0-BB6D02D1553B/MMC8.XLSX.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Öhrfelt A, Blennow K, Hardy J, Schott J, Mills K, Zetterberg H. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener. 2016;11(1):1–7. https://doi.org/10.1186/S13024-016-0071-X/TABLES/1.

    Article 

    Google Scholar
     

  • Suárez‐Calvet M., Kleinberger G., Araque Caballero M. Á., Brendel M., Rominger A., Alcolea D., Fortea J., Lleó A., Blesa R., Gispert J. D., Sánchez‐Valle R., Antonell A., Rami L., Molinuevo J. L., Brosseron F., Traschütz A., Heneka M. T., Struyfs H., Engelborghs S., … Haass C. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mole Med. 2016; 8(5):466–476. https://doi.org/10.15252/EMMM.201506123.

  • Cosma N. C., Eren N., Üsekes B., Gerike S., Heuser I., Peters O., & Hellmann-Regen J. Acute and Chronic Macrophage Differentiation Modulates TREM2 in a Personalized Alzheimer’s Patient-Derived Assay. Cell Mole Neurobiol. 2023:1–14. https://doi.org/10.1007/S10571-023-01351-7/FIGURES/4.

  • Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173(4):649–65. https://doi.org/10.1111/BPH.13139.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci USA. 2009;106(1):256–61. https://doi.org/10.1073/PNAS.0803343106/SUPPL_FILE/0803343106SI.PDF.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired Differentiation of Osteoclasts in TREM-2–deficient Individuals. J Exp Med. 2003;198(4):645–51. https://doi.org/10.1084/JEM.20022220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molgora M., Esaulova E., Vermi W., Hou J., Chen Y., Luo J., Brioschi S., Bugatti M., Omodei A. S., Ricci B., Fronick C., Panda S. K., Takeuchi Y., Gubin M. M., Faccio R., Cella M., Gilfillan S., Unanue E. R., Artyomov M. N., … Colonna M. TREM2 Modulation Remodels the Tumor Myeloid Landscape, Enhancing Anti-PD-1 Immunotherapy. Cell. 2020;182(4):886. https://doi.org/10.1016/J.CELL.2020.07.013.

  • Turnbull I. R., Gilfillan S., Cella M., Aoshi T., Miller M., Piccio L., Hernandez M., & Colonna  M. Cutting edge: TREM-2 attenuates macrophage activation. Journal of Immunology (Baltimore, Md. : 1950). 2006;177(6):3520–3524. https://doi.org/10.4049/JIMMUNOL.177.6.3520.

  • Baitsch D, Bock HH, Engel T, Telgmann R, Müller-Tidow C, Varga G, Bot M, Herz J, Robenek H, Von Eckardstein A, Nofer JR. Apolipoprotein E induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1160–8. https://doi.org/10.1161/ATVBAHA.111.222745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosma NC, Üsekes B, Otto LR, Gerike S, Heuser I, Regen F, Hellmann-Regen J. M1/M2 polarization in major depressive disorder: Disentangling state from trait effects in an individualized cell-culture-based approach. Brain Behav Immun. 2021;94:185–95. https://doi.org/10.1016/j.bbi.2021.02.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75. https://doi.org/10.1111/J.1474-9726.2012.00851.X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovacs EJ, Palmer JL, Fortin CF, Fülöp T, Goldstein DR, Linton PJ. Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol. 2009;30(7):319–24. https://doi.org/10.1016/J.IT.2009.03.012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Taha M, Rius C, Hermenegildo C, Noguera I, Cerda-Nicolas J-M, Issekutz AC, Jose PJ, Cortijo J, Morcillo EJ, Sanz M-J. Menopause and ovariectomy cause a low grade of systemic inflammation that may be prevented by chronic treatment with low doses of estrogen or losartan. J Immunol. 2009;183(2):1393–402. https://doi.org/10.4049/JIMMUNOL.0803157.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Starr ME, Saito M, Evers BM, Saito H. Age-Associated Increase in Cytokine Production During Systemic Inflammation—II: The Role of IL-1β in Age-Dependent IL-6 Upregulation in Adipose Tissue. J Gerontol A Biol Sci Med Sci. 2015;70(12):1508. https://doi.org/10.1093/GERONA/GLU197.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trzonkowski P, Myśliwska J, Szmit E, Wiȩckiewicz J, Łukaszuk K, Brydak LB, Machała M, Myśliwski A. Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination – An impact of immunosenescence. Vaccine. 2003;21(25–26):3826–36. https://doi.org/10.1016/S0264-410X(03)00309-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes-Paciencia S, Saint-Germain E, Rowell MC, Ruiz AF, Kalegari P, Ferbeyre G. The senescence-associated secretory phenotype and its regulation. Cytokine. 2019;117:15–22. https://doi.org/10.1016/J.CYTO.2019.01.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, Casadei V, Grimaldi LME. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol. 2000;103(1):97–102. https://doi.org/10.1016/S0165-5728(99)00226-X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng A., Tam W. W., Zhang M. W., Ho C. S., Husain S. F., McIntyre R. S., & Ho R. C. (2018). IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer’s disease: Systematic Review and Meta-Analysis. Sci Rep 2018;8(1):1–12. https://doi.org/10.1038/s41598-018-30487-6.

  • Munawara U., Catanzaro M., Xu W., Tan C., Hirokawa K., Bosco N., Dumoulin D., Khalil A., Larbi A., Lévesque S., Ramassamy C., Barron A. E., Cunnane S., Beauregard P. B., Bellenger J. P., Rodrigues S., Desroches M., Witkowski J. M., Laurent B., … Fulop T. Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer’s disease. Immun Ageing. 2021;18(1):1–25. https://doi.org/10.1186/S12979-021-00236-X.

  • Barron AM, Pike CJ. Sex hormones, aging, and Alzheimer’s disease. Front Biosci (Elite Ed). 2012;4(3):976. https://doi.org/10.2741/E434.

    Article 
    PubMed 

    Google Scholar
     

  • Dodiya HB, Kuntz T, Shaik SM, Baufeld C, Leibowitz J, Zhang X, Gottel N, Zhang X, Butovsky O, Gilbert JA, Sisodia SS. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med. 2019;216(7):1542–60. https://doi.org/10.1084/JEM.20182386.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jirillo E, Rink L, Fransen F, Van Beek AA, Borghuis T, Meijer B, Van Der Gaast-De Jongh C, Savelkoul HF, De Jonge MI, Faas MM, Boekschoten MV, Smidt H, Aidy SE, De Vos P. The impact of gut Microbiota on gender-specific Differences in immunity. 2017;8:30. https://doi.org/10.3389/fimmu.2017.00754.

    Article 
    CAS 

    Google Scholar
     

  • Arnold M., Nho K., Kueider-Paisley A., Massaro T., Huynh K., Brauner B., MahmoudianDehkordi, S., Louie G., Moseley M. A., Thompson J. W., John-Williams L. S., Tenenbaum J. D., Blach C., Chang R., Brinton R. D., Baillie R., Han X., Trojanowski J. Q., Shaw L. M., … Kastenmüller G.  Sex and APOE ε4 genotype modify the Alzheimer’s disease serum metabolome. Nature Communications. 2020;11(1). https://doi.org/10.1038/S41467-020-14959-W.

  • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159(6):1327–40. https://doi.org/10.1016/J.CELL.2014.11.023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvin CM, de Boer C, Raymont V, Gallacher J, Koychev I. Prediction of Alzheimer’s disease biomarker status defined by the “ATN framework” among cognitively healthy individuals: results from the EPAD longitudinal cohort study. Alzheimer’s Res Ther. 2020;12(1):143. https://doi.org/10.1186/S13195-020-00711-5/FIGURES/3.

    Article 

    Google Scholar
     

  • Delmotte K, Schaeverbeke J, Poesen K, Vandenberghe R. Prognostic value of amyloid/tau/neurodegeneration (ATN) classification based on diagnostic cerebrospinal fluid samples for Alzheimer’s disease. Alzheimer’s Research and Therapy. 2021;13(1):1–13. https://doi.org/10.1186/S13195-021-00817-4/TABLES/3.

    Article 

    Google Scholar
     

  • Association WM. World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. https://doi.org/10.1001/JAMA.2013.281053.

    Article 

    Google Scholar
     

  • Regen F, Herzog I, Hahn E, Ruehl C, le Bret N, Dettling M, Heuser I, Hellmann-Regen J. Clozapine-induced agranulocytosis: Evidence for an immune-mediated mechanism from a patient-specific in-vitro approach. Toxicol Appl Pharmacol. 2017;316:10–6. https://doi.org/10.1016/J.TAAP.2016.12.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeed S., Quintin J., Kerstens H. H. D., Rao N. A., Aghajanirefah A., Matarese F., Cheng S. C., Ratter J., Berentsem K., van der Ent M. A., Sharifi N., Jamssern-Megens E. M., ter Huurne M., Mandoli A., van Schaik T., Ng A., Burden F., Downes K., Frontini M., … Stunnenberg H. G. Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity. Science (New York, N.Y.). 2014; 345(6204):1251086. https://doi.org/10.1126/SCIENCE.1251086.

  • Scull CM, Hays WD, Fischer TH. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J Inflamm. 2010;7:53. https://doi.org/10.1186/1476-9255-7-53.

    Article 
    CAS 

    Google Scholar
     

  • Lim YY, Snyder PJ, Pietrzak RH, Ukiqi A, Villemagne VL, Ames D, Salvado O, Bourgeat P, Martins RN, Masters CL, Rowe CC, Maruff P. Sensitivity of composite scores to amyloid burden in preclinical Alzheimer’s disease: Introducing the Z-scores of Attention, Verbal fluency, and Episodic memory for Nondemented older adults composite score. Alzheimer’s Dement. 2016;2:19–26. https://doi.org/10.1016/J.DADM.2015.11.003.

    Article 

    Google Scholar
     

  • Song MK, Lin FC, Ward SE, Fine JP. Composite variables: when and how. Nurs Res. 2013;62(1):45–9. https://doi.org/10.1097/NNR.0B013E3182741948.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang R, Wey A, Bobbili NK, Leke RFG, Taylor DW, Chen JJ. An analytical approach to reduce between-plate variation in multiplex assays that measure antibodies to Plasmodium falciparum antigens. Malar J. 2017;16(1):1–10. https://doi.org/10.1186/S12936-017-1933-6/FIGURES/3.

    Article 
    CAS 

    Google Scholar
     

  • Italiani P., & Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front Immunol. 2014;5(OCT):514. https://doi.org/10.3389/FIMMU.2014.00514/BIBTEX.

  • Dorneles G. P., da Silva I. M., Santos M. A., Elsner V. R., Fonseca S. G., Peres A., & Romão P. R. T. Immunoregulation induced by autologous serum collected after acute exercise in obese men: a randomized cross-over trial. Sci Rep. 2020;10(1):1–16. https://doi.org/10.1038/s41598-020-78750-z.

  • Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron. 2016;91(2):328–40. https://doi.org/10.1016/j.neuron.2016.06.015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen AT, Wang K, Hu G, Wang X, Miao Z, Azevedo JA, Suh ER, Van Deerlin VM, Choi D, Roeder K, Li M, Lee EB. APOE and TREM2 regulate amyloid responsive microglia in Alzheimer’s disease. Acta Neuropathol. 2020;140(4):477. https://doi.org/10.1007/S00401-020-02200-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parhizkar S., Arzberger T., Brendel M., Kleinberger G., Deussing M., Focke C., Nuscher B., Xiong M., Ghasemigharagoz A., Katzmarski N., Krasemann S., Lichtenthaler S. F., Müller S. A., Colombo A., Monasor L. S., Tahirovic S., Herms J., Willem M., Pettkus N., … Haass C. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat Neurosci. 2019;22(2), 191–204. https://doi.org/10.1038/S41593-018-0296-9.

  • Saresella M, Marventano I, Piancone F, la Rosa F, Galimberti D, Fenoglio C, Scarpini E, Clerici M. IL-33 and its decoy sST2 in patients with Alzheimer’s disease and mild cognitive impairment. J Neuroinflammation. 2020;17(1):1–10. https://doi.org/10.1186/S12974-020-01806-4/FIGURES/5.

    Article 

    Google Scholar
     

  • Safi W., Kuehnl A., Nüssler A., Eckstein H.-H., & Pelisek J. Differentiation of human CD14+ monocytes: an experimental investigation of the optimal culture medium and evidence of a lack of differentiation along the endothelial line. Exp Mole Med. 2016; 227. https://doi.org/10.1038/emm.2016.11.

  • Li, J. T., & Zhang, Y. TREM2 regulates innate immunity in Alzheimer’s disease. Journal of Neuroinflammation. 2018; 15(1). https://doi.org/10.1186/S12974-018-1148-Y.

  • Ulrich JD, Ulland TK, Colonna M, Holtzman DM. Elucidating the Role of TREM2 in Alzheimer’s Disease. Neuron. 2017;94(2):237–48. https://doi.org/10.1016/J.NEURON.2017.02.042.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casati M, Ferri E, Gussago C, Mazzola P, Abbate C, Bellelli G, Mari D, Cesari M, Arosio B. Increased expression of TREM2 in peripheral cells from mild cognitive impairment patients who progress into Alzheimer’s disease. Eur J Neurol. 2018;25(6):805–10. https://doi.org/10.1111/ENE.13583.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mori Y, Yoshino Y, Ochi S, Yamazaki K, Kawabe K, Abe M, Kitano T, Ozaki Y, Yoshida T, Numata S, Mori T, Iga J, Kuroda N, Ohmori T, Ueno S. TREM2 mRNA Expression in Leukocytes Is Increased in Alzheimer’s Disease and Schizophrenia. PLoS ONE. 2015;10(9): e0136835. https://doi.org/10.1371/journal.pone.0136835.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winfree RL, Seto M, Dumitrescu L, Menon V, De Jager P, Wang Y, Schneider J, Bennett DA, Jefferson AL, Hohman TJ. TREM2 gene expression associations with Alzheimer’s disease neuropathology are region-specific: implications for cortical versus subcortical microglia. Acta Neuropathol. 2023;1:1–15. https://doi.org/10.1007/S00401-023-02564-2/FIGURES/5.

    Article 

    Google Scholar
     

  • Wu K, Byers DE, Jin X, Agapov E, Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober DL, Brett TJ, Holtzman MJ. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J Exp Med. 2015;212(5):681–97. https://doi.org/10.1084/JEM.20141732.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao A., Jiao Y., Ye G., Kang W., Tan L., Li Y., Deng Y., & Liu J. Soluble TREM2 levels associate with conversion from mild cognitive impairment to Alzheimer’s disease. J Clin Invest. 2022;132(24). https://doi.org/10.1172/JCI158708.

  • Edwin T. H., Henjum K., Nilsson L. N. G., Watne L. O., Persson K., Eldholm R. S., Saltvedt I., Halaas N. B., Selbæk G., Engedal K., Strand B. H., & Knapskog A. B.  A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer’s disease. Alzheimer’s and Dement. 2020;12(1). https://doi.org/10.1002/dad2.12128.

  • Knapskog A. B., Henjum K., Idland A. V., Eldholm R. S., Persson K., Saltvedt I., Watne L. O., Engedal K., & Nilsson L. N. G. Cerebrospinal fluid sTREM2 in Alzheimer’s disease: comparisons between clinical presentation and AT classification. Scientific Reports 2020; 10(1):1–10. https://doi.org/10.1038/s41598-020-72878-8.

  • Brendel M., Kleinberger G., Probst F., Jaworska A., Overhoff F., Blume T., Albert N. L., Carlsen J., Lindner S., Gildehaus F. J., Ozmen L., Suárez-Calvet M., Bartenstein P., Baumann K., Ewers M., Herms J., Haass C., & Rominger A.  Increase of TREM2 during Aging of an Alzheimer’s Disease Mouse Model Is Paralleled by Microglial Activation and Amyloidosis. Frontiers in Aging Neuroscience. 2017;9(JAN). https://doi.org/10.3389/FNAGI.2017.00008.

  • Lanfranco M. F., Sepulveda J., Kopetsky | Gregory, & Rebeck, | G William.  Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. (2021). https://doi.org/10.1002/glia.23974.

  • Lane-Donovan C, Wong WM, Durakoglugil MS, Wasser CR, Jiang S, Xian X, Herz J. genetic restoration of plasma ApoE improves cognition and partially restores synaptic defects in ApoE-deficient mice. J Neurosci. 2016;36(39):10141–50. https://doi.org/10.1523/JNEUROSCI.1054-16.2016.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Martínez AB, Torres-Perez E, Devanney N, Moral RD, Johnson LA, Arbones-Mainar JM. Beyond the CNS: The many peripheral roles of APOE HHS public access. Neurobiol Dis. 2020;138: 104809. https://doi.org/10.1016/j.nbd.2020.104809.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuckerman SH, Evans GF, O’Neal L. Cytokine regulation of macrophage apo E secretion: opposing effects of GM-CSF and TGF-beta. Atherosclerosis. 1992;96(2–3):203–14. https://doi.org/10.1016/0021-9150(92)90066-P.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fazios S, Yaoq Z, Mccarthy BJ, Rall SC. The journal of biological chemistry synthesis and secretion of apolipoprotein e occur independently of synthesis and secretion of apolipoprotein b-containing lipoproteins in hepg2 cells*. J Biol Chem. 1992;267(10):6941–5. https://doi.org/10.1016/S0021-9258(19)50519-1.

    Article 

    Google Scholar
     

  • Sweeney M. D., Sagare A. P., & Zlokovic B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Publishing Group, 2018;14. https://doi.org/10.1038/nrneurol.2017.188.

  • Zhu D, Yang N, Liu YY, Zheng J, Ji C, Zuo PP. M2 macrophage transplantation ameliorates cognitive dysfunction in Amyloid-β-treated rats through regulation of microglial polarization. J Alzheimer’s Dis. 2016;52(2):483–95. https://doi.org/10.3233/JAD-151090.

    Article 
    CAS 

    Google Scholar
     

  • Martin E, Boucher C, Fontaine B, Delarasse C. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell. 2017;16(1):27–38. https://doi.org/10.1111/ACEL.12522.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155. https://doi.org/10.1007/S00401-016-1662-X.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang A. C., Vest R. T., Kern F., Lee D. P., Agam M., Maat C. A., Losada P. M., Chen M. B., Schaum N., Khoury N., Toland A., Calcuttawala K., Shin H., Pálovics R., Shin A., Wang E. Y., Luo J., Gate D., Schulz-Schaeffer W. J., … Wyss-Coray T. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022;1–8. https://doi.org/10.1038/s41586-021-04369-3.

  • Malpetti M, Ballarini T, Presotto L, Garibotto V, Tettamanti M, Perani D. Gender differences in healthy aging and Alzheimer’s Dementia: A 18F-FDG-PET study of brain and cognitive reserve. Hum Brain Mapp. 2017;38(8):4212–27. https://doi.org/10.1002/HBM.23659.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • So J, Tai AK, Lichtenstein AH, Wu D, Lamon-Fava S. Sexual dimorphism of monocyte transcriptome in individuals with chronic low-grade inflammation. Biol Sex Differ. 2021;12(1):1–11. https://doi.org/10.1186/S13293-021-00387-Y/FIGURES/4.

    Article 

    Google Scholar
     

  • Varghese M., Clemente J., Lerner A., Abrishami S., Islam M., Subbaiah P., & Singer K. Monocyte Trafficking and Polarization Contribute to Sex Differences in Meta-Inflammation. Front Endocrinol. 2022;13. https://doi.org/10.3389/FENDO.2022.826320.

  • Chen K.-H. E., Lainez N. M., & Coss D. Sex Differences in Macrophage Responses to Obesity-Mediated Changes Determine Migratory and Inflammatory Traits. Journal of Immunology (Baltimore, Md. : 1950). 2021;206(1):141–153. https://doi.org/10.4049/JIMMUNOL.2000490

  • Jaitin D. A., Adlung L., Thaiss C. A., Weiner A., Li B., Descamps H., Lundgren P., Bleriot C., Liu Z., Deczkowska A., Keren-Shaul H., David E., Zmora N., Eldar S. M., Lubezky N., Shibolet O., Hill D. A., Lazar M. A., Colonna M., … Amit I. Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell. 2019;178(3):686–698.e14. https://doi.org/10.1016/j.cell.2019.05.054.

  • Li R. Y., Qin Q., Yang H. C., Wang Y. Y., Mi Y. X., Yin Y. S., Wang M., Yu C. J., & Tang Y. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mole Neurodegen. 2022;17(1):1–19. https://doi.org/10.1186/S13024-022-00542-Y.

  • St-Pierre M. K., Carrier M., González Ibáñez F., Šimončičová E., Wallman M. J., Vallières L., Parent M., & Tremblay M. È. Ultrastructural characterization of dark microglia during aging in a mouse model of Alzheimer’s disease pathology and in human post-mortem brain samples. J Neuroinflamm 2022;19(1):1–22. https://doi.org/10.1186/S12974-022-02595-8.

  • Streit WJ, Braak H, Xue QS, Bechmann I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2009;118(4):475–85. https://doi.org/10.1007/S00401-009-0556-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malm TM, Koistinaho M, Pärepalo M, Vatanen T, Ooka A, Karlsson S, Koistinaho J. Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to β-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis. 2005;18(1):134–42. https://doi.org/10.1016/J.NBD.2004.09.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502. https://doi.org/10.1016/j.neuron.2006.01.022.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S. H., Tian D. Y., Shen Y. Y., Cheng Y., Fan D. Y., Sun H. L., He C. Y., Sun P. Y., Bu X. Le, Zeng F., Liu J., Deng J., Xu Z. Q., Chen Y., & Wang Y. J. Amyloid-beta uptake by blood monocytes is reduced with ageing and Alzheimer’s disease. Transl Psychiatry. 2020;10(1). https://doi.org/10.1038/S41398-020-01113-9.

  • Bu, G. APOE targeting strategy in Alzheimer’s disease: lessons learned from protective variants. Molecular Neurodegeneration. 2022;17(1). https://doi.org/10.1186/S13024-022-00556-6.

  • Lin Y. T., Seo J., Gao F., Feldman H. M., Wen H. L., Penney J., Cam H. P., Gjoneska E., Raja W. K., Cheng J., Rueda R., Kritskiy O., Abdurrob F., Peng Z., Milo B., Yu C. J., Elmsaouri S., Dey  D., Ko T., … Tsai L. H.  APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron. 2018;98(6):1141–1154.e7. https://doi.org/10.1016/J.NEURON.2018.05.008.

  • Muth C., Hartmann A., Sepulveda-Falla D., Glatzel M., & Krasemann S. Phagocytosis of Apoptotic Cells Is Specifically Upregulated in ApoE4 Expressing Microglia in vitro. Front Cell Neurosci. 2019;13. https://doi.org/10.3389/FNCEL.2019.00181.

  • Guerreiro R., Wojtas A., Bras J., Carrasquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J. S. K., Younkin S., Hazrati L., Collinge J., Pocock J., Lashley T., Williams J., Lambert J.-C., Amouyel P., Goate A., Rademakers R., … Hardy J.  TREM2 Variants in Alzheimer’s Disease . New England J Med. 2013;368(2):117–127. https://doi.org/10.1056/NEJMOA1211851/SUPPL_FILE/NEJMOA1211851_DISCLOSURES.PDF.

  • Jonsson T., Stefansson H., Steinberg S., Jonsdottir I., Jonsson P. V., Snaedal J., Bjornsson S., Huttenlocher J., Levey A. I., Lah J. J., Rujescu D., Hampel H., Giegling I., Andreassen O. A., Engedal K., Ulstein I., Djurovic S., Ibrahim-Verbaas C., Hofman A., … Stefansson K.  Variant of TREM2 Associated with the Risk of Alzheimer’s Disease . New England J Med. 2013;368(2):107–116. https://doi.org/10.1056/NEJMOA1211103/SUPPL_FILE/NEJMOA1211103_DISCLOSURES.PDF.

  • Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos EM, Wang Q, Karydas A, Miller ZA, Miller BL, Coppola G, Yokoyama JS. Rare TREM2 variants associated with Alzheimer’s disease display reduced cell surface expression. Acta Neuropathol Commun. 2016;4(1):98. https://doi.org/10.1186/S40478-016-0367-7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link