Scientific Papers

Retinal mid-peripheral capillary free zones are enlarged in cognitively unimpaired older adults at high risk for Alzheimer’s disease | Alzheimer’s Research & Therapy


  • Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimer’s Dement. 2023;19:658–70.

    Article 

    Google Scholar
     

  • 2023 Alzheimer’s disease facts and figures. Alzheimer’s Association Report. Alzheimer’s Dement. 2023;19:1598–695.

  • Lad EM, Mukherjee D, Stinnett SS, Cousins SW, Potter GG, Burke JR, et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS ONE. 2018;13:e0192646.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Rue A, Jarvik LF. Cognitive function and prediction of dementia in old age. Int J Aging Hum Dev. 1987;25:79–89.

    Article 
    PubMed 

    Google Scholar
     

  • Linn RT, Wolf PA, Bachman DL, Knoefel JE, Cobb JL, Belanger AJ, et al. The ‘preclinical phase’ of probable Alzheimer’s disease: a 13-year prospective study of the Framingham cohort. Arch Neurol. 1995;52:485–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snowdon DA, Kemper SJ, Mortimer JA, Greiner LH, Wekstein DR, Markesbery WR. Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: findings from the Nun Study. JAMA. 1996;275:528–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18:351–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elias MF, Beiser A, Wolf PA, Au R, White RF, D’Agostino RB. The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Arch Neurol. 2000;57:808–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawas CH, Corrada MM, Brookmeyer R, Morrison A, Resnick SM, Zonderman AB, et al. Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology. 2003;60:1089–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature. 2018;554:249–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karikari TK, Pascoal TA, Ashton NJ, Janelidze S, Benedet AL, Rodriguez JL, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashton NJ, Janelidze S, Al Khleifat A, Leuzy A, van der Ende EL, Karikari TK, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun. 2021;12:3400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verberk IM, Laarhuis MB, van den Bosch KA, Ebenau JL, van Leeuwenstijn M, Prins ND, et al. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longev. 2021;2:e87–95.

    Article 
    PubMed 

    Google Scholar
     

  • Shin JY, Choi EY, Kim M, Lee HK, Byeon SH. Changes in retinal microvasculature and retinal layer thickness in association with apolipoprotein E genotype in Alzheimer’s disease. Sci Rep. 2021;11:1847.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Cuenca I, de Hoz R, Alcántara-Rey C, Salobrar-García E, Elvira-Hurtado L, Fernández-Albarral JA, et al. Foveal avascular zone and choroidal thickness are decreased in subjects with hard Drusen and without high genetic risk of developing Alzheimer’s disease. Biomedicines. 2021;9:638.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma JP, Robbins CB, Lee JM, Soundararajan S, Stinnett SS, Agrawal R, et al. Longitudinal analysis of the retina and choroid in cognitively normal individuals at higher genetic risk of Alzheimer disease. Ophthalmol Retina. 2022;6:607–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Cuenca I, Marcos-Dolado A, Yus-Fuertes M, Salobrar-García E, Elvira-Hurtado L, Fernández-Albarral JA, et al. The relationship between retinal layers and brain areas in asymptomatic first-degree relatives of sporadic forms of Alzheimer’s disease: an exploratory analysis. Alzheimers Res Ther. 2022;14:1–8.

    Article 

    Google Scholar
     

  • London A, Benhar I, Schwartz M. The retina as a window to the brain—from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabrera DeBuc D, Somfai GM, Koller A. Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases. Am J Physiol Heart Circ Physiol. 2016;312:H201–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho KA, Rege A, Jing Y, Chaurasia A, Guruprasad A, Arthur E, et al. Portable, non-invasive video imaging of retinal blood flow dynamics. Sci Rep. 2020;10:20236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashraf M, Sampani K, Abu-Qamar O, Cavallerano J, Silva PS, Aiello LP, et al. Optical coherence tomography angiography projection artifact removal: impact on capillary density and interaction with diabetic retinopathy severity. Transl Vis Sci Technol. 2020;9:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arthur E, Elsner AE, Sapoznik KA, Papay JA, Muller MS, Burns SA. Distances from capillaries to arterioles or venules measured using OCTA and AOSLO. Invest Ophthalmol Vis Sci. 2019;60:1833–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arthur E, Alber J, Thompson LI, Sinoff S, Snyder PJ. OCTA reveals remodeling of the peripheral capillary free zones in normal aging. Sci Rep. 2021;11:15593.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arthur E, Papay JA, Haggerty BP, Clark CA, Elsner AE. Subtle changes in diabetic retinas localised in 3D using OCT. Ophthalmic Physiol Opt. 2018;38:477–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chui TY, VanNasdale DA, Elsner AE, Burns SA. The association between the foveal avascular zone and retinal thickness. Invest Ophthalmol Vis Sci. 2014;55:6870–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong D, Zou X, Zhang X, Yu W, Qu Y, Dong F. The influence of age and central foveal thickness on foveal zone size in healthy people. Ophthalmic Surg Lasers Imaging Retina. 2016;47:142–8.

    Article 
    PubMed 

    Google Scholar
     

  • Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:5780–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samara WA, Say EA, Khoo CT, Higgins TP, Magrath G, Ferenczy S, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35:2188–95.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang YS, Zhou N, Knoll BM, Samra S, Ward MR, Weintraub S, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s disease on optical coherence tomography angiography. PLoS ONE. 2019;14:e0214685.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van De Kreeke JA, Nguyen HT, Konijnenberg E, Tomassen J, Den Braber A, Ten Kate M, et al. Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br J Ophthalmol. 2020;104:157–61.

    Article 
    PubMed 

    Google Scholar
     

  • Yoon SP, Grewal DS, Thompson AC, Polascik BW, Dunn C, Burke JR, et al. Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol Retina. 2019;3:489–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • den Haan J, van de Kreeke JA, van Berckel BN, Barkhof F, Teunissen CE, Scheltens P, et al. Is retinal vasculature a biomarker in amyloid proven Alzheimer’s disease? Alzheimers Dement (Amst). 2019;11:383–91.

    Article 

    Google Scholar
     

  • Bulut M, Kurtuluş F, Gözkaya O, Erol MK, Cengiz A, Akıdan M, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol. 2018;102:233–7.

    Article 
    PubMed 

    Google Scholar
     

  • O’bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol. 2018;136:1242–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang H, Wei Y, Shi Y, Wright CB, Sun X, Gregori G, et al. Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J Neuroophthalmol. 2018;38:292–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi H, Koronyo Y, Rentsendorj A, Regis GC, Sheyn J, Fuchs DT, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer’s disease retina. Acta Neuropathol. 2020;10:1–24.


    Google Scholar
     

  • Shi H, Koronyo Y, Fuchs DT, Sheyn J, Wawrowsky K, Lahiri S, et al. Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer’s disease. Acta Neuropathol Commun. 2020;8:1–20.

    Article 

    Google Scholar
     

  • Bennett AG, Rudnicka AR, Edgar DF. Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol. 1994;232:361–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith T, Gildeh N, Holmes C. The Montreal Cognitive Assessment: validity and utility in a memory clinic setting. Can J Psychiatry. 2007;52:329–32.

    Article 
    PubMed 

    Google Scholar
     

  • Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    Article 
    PubMed 

    Google Scholar
     

  • Karantzoulis S, Novitski J, Gold M, Randolph C. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): utility in detection and characterization of mild cognitive impairment due to Alzheimer’s disease. Arch Clin Neuropsychol. 2013;28:837–44.

    Article 
    PubMed 

    Google Scholar
     

  • Randolph C, Tierney MC, Mohr E, Chase TN. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20:310–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dogan M, Akdogan M, Gulyesil FF, Sabaner MC, Gobeka HH. Cigarette smoking reduces deep retinal vascular density. Clin Exp Optom. 2020;103:838–42.

    Article 
    PubMed 

    Google Scholar
     

  • Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.

    Article 
    PubMed 

    Google Scholar
     

  • Jerman T, Pernuš F, Likar B, Špiclin Ž. Enhancement of vascular structures in 3D and 2D angiographic images. IEEE Trans Med Imaging. 2016;35:2107–18.

    Article 
    PubMed 

    Google Scholar
     

  • Jerman T, Pernuš F, Likar B, Špiclin Ž. Blob enhancement and visualization for improved intracranial aneurysm detection. IEEE Trans Visual Comput Graphics. 2015;22:1705–17.

    Article 

    Google Scholar
     

  • Xu X, Xu S, Jin L, Song E. Characteristic analysis of Otsu threshold and its applications. Pattern Recogn Lett. 2011;32:956–61.

    Article 
    CAS 

    Google Scholar
     

  • Alber J, Arthur E, Sinoff S, DeBuc DC, Chew EY, Douquette L, et al. A recommended “minimum data set” framework for SD-OCT retinal image acquisition and analysis from the Atlas of Retinal Imaging in Alzheimer’s Study (ARIAS). Alzheimers Dement (Amst). 2020;12:e12119.

    PubMed 

    Google Scholar
     

  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020;16:137–53.

    Article 
    PubMed 

    Google Scholar
     

  • Chen W, Song X, Zhang Y, Alzheimer’s Disease Neuroimaging Initiative. Assessment of the Virchow-Robin Spaces in Alzheimer disease, mild cognitive impairment, and normal aging, using high-field MR imaging. AJNR Am J Neuroradiol. 2011;32:1490–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee G, Kim HJ, Fox Z, Jäger HR, Wilson D, Charidimou A, et al. MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017;140:1107–16.

    Article 
    PubMed 

    Google Scholar
     

  • Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10:241–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hultman K, Strickland S, Norris EH. The APOE ɛ4/ɛ4 genotype potentiates vascular fibrin (ogen) deposition in amyloid-laden vessels in the brains of Alzheimer’s disease patients. J Cereb Blood Flow Metab. 2013;33:1251.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manelli AM, Stine WB, Van Eldik LJ, LaDu MJ. ApoE and Abeta1-42 interactions: effects of isoform and conformation on structure and function. J Mol Neurosci. 2004;23:235–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navarro A, DelValle E, Astudillo A, del GonzalezRey C, Tolivia J. Immunohistochemical study of distribution of apolipoproteins E and D in human cerebral beta amyloid deposits. Exp Neurol. 2003;184:697–704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown WR, Moody DM, Challa VR, Thore CR, Anstrom JA. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci. 2002;203:159–63.

    Article 
    PubMed 

    Google Scholar
     

  • Vinters HV, Zarow C, Borys E, Whitman JD, Tung S, Ellis WG, et al. Vascular dementia: clinicopathologic and genetic considerations. Neuropathol Appl Neurobiol. 2018;44:247–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen JA, Keith J, Gao F, Spence JD, Black SE. CADASIL accelerated by acute hypotension: arterial and venous contribution to leukoaraiosis. Neurology. 2017;88:1077–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouvy WH, Biessels GJ, Kuijf HJ, Kappelle LJ, Luijten PR, Zwanenburg JJ. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest Radiol. 2014;49:307–13.

    Article 
    PubMed 

    Google Scholar
     

  • Schlesinger B. The venous drainage of the brain, with special reference to the galenic system. Brain. 1939;62:274–91.

    Article 

    Google Scholar
     

  • Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow-Robin spaces. AJR Am J Roentgenol. 1988;9:621–8.


    Google Scholar
     

  • Chan VT, Sun Z, Tang S, Chen LJ, Wong A, Tham CC, et al. Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology. 2019;126:497–510.

    Article 
    PubMed 

    Google Scholar
     

  • Santos CY, Johnson LN, Sinoff SE, Festa EK, Heindel WC, Snyder PJ. Change in retinal structural anatomy during the preclinical stage of Alzheimer’s disease. Alzheimers Dement (Amst). 2018;10:196–209.

    Article 
    PubMed 

    Google Scholar
     

  • Mutlu U, Bonnemaijer PW, Ikram MA, Colijn JM, Cremers LG, Buitendijk GH, et al. Retinal neurodegeneration and brain MRI markers: the Rotterdam Study. Neurobiol Aging. 2017;60:183–91.

    Article 
    PubMed 

    Google Scholar
     

  • Wollstein G, Schuman JS, Price LL, Aydin A, Stark PC, Hertzmark E, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, et al. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci. 2001;42:1993–2003.

    CAS 
    PubMed 

    Google Scholar
     

  • Hood DC, Anderson SC, Wall M, Kardon RH. Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci. 2007;48:3662–8.

    Article 
    PubMed 

    Google Scholar
     

  • Thompson IA, Durrani AK, Patel S. Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy. Eye (Lond). 2019;33:648–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosen RB, Romo JS, Krawitz BD, Mo S, Fawzi AA, Linderman RE, et al. Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am J Ophthalmol. 2019;203:103–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35:2377–83.

    Article 
    PubMed 

    Google Scholar
     

  • Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017;2:e93621.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snyder PJ, Johnson LN, Lim YY, Santos CY, Alber J, Maruff P, et al. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimers Dement (Amst). 2016;4:169–78.

    Article 
    PubMed 

    Google Scholar
     

  • Dentchev T, Milam AH, Lee VM, Trojanowski JQ, Dunaief JL. Amyloid-β is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis. 2003;9:184–90.

    CAS 
    PubMed 

    Google Scholar
     

  • López-Cuenca I, Salobrar-García E, Gil-Salgado I, Sánchez-Puebla L, Elvira-Hurtado L, Fernández-Albarral JA, et al. Characterization of retinal drusen in subjects at high genetic risk of developing sporadic Alzheimer’s disease: an exploratory analysis. J Pers Med. 2022;12:847.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabrera DeBuc D, Feuer WJ, Persad PJ, Somfai GM, Kostic M, Oropesa S, et al. Investigating vascular complexity and neurogenic alterations in sectoral regions of the retina in patients with cognitive Impairment. Front Physiol. 2020;11:570412.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmqvist S, Janelidze S, Quiroz YT, Zetterberg H, Lopera F, Stomrud E, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324:772–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021;141:709–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mielke MM, Frank RD, Dage JL, Jeromin A, Ashton NJ, Blennow K, et al. Comparison of plasma phosphorylated tau species with amyloid and tau positron emission tomography, neurodegeneration, vascular pathology, and cognitive outcomes. JAMA Neurol. 2021;78:1108–17.

    Article 
    PubMed 

    Google Scholar
     

  • Ashton NJ, Janelidze S, Mattsson-Carlgren N, Binette AP, Strandberg O, Brum WS, et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nat Med. 2022;28:2555–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janelidze S, Teunissen CE, Zetterberg H, Allué JA, Sarasa L, Eichenlaub U, et al. Head-to-head comparison of 8 plasma amyloid-β 42/40 assays in Alzheimer disease. JAMA Neurol. 2021;78:1375–82.

    Article 
    PubMed 

    Google Scholar
     

  • Galasko D, Golde TE. Biomarkers for Alzheimer’s disease in plasma, serum and blood-conceptual and practical problems. Alzheimers Res Ther. 2013;5:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roher AE, Esh CL, Kokjohn TA, Castaño EM, Van Vickle GD, Kalback WM, et al. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement. 2009;5:18–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link