Scientific Papers

Quantitative analysis of acetylation in peste des petits ruminants virus-infected Vero cells | Virology Journal


  • Baron MD, Diallo A, Lancelot R, Libeau G. Peste des Petits Ruminants Virus. Adv Virus Res. 2016;95:1–42. https://doi.org/10.1016/bs.aivir.2016.02.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhen S, Deng X, Wang J, Zhu G, Cao H, Yuan L, Yan Y. First Comprehensive Proteome analyses of lysine Acetylation and Succinylation in Seedling Leaves of Brachypodium distachyon L. Sci Rep. 2016;6:31576. https://doi.org/10.1038/srep31576.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2011;7:58–63. https://doi.org/10.1038/nchembio.495.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Keppler OT, Scholz C. Post-translational modification-based regulation of HIV replication. Front Microbiol. 2018;9:2131. https://doi.org/10.3389/fmicb.2018.02131.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325:834–40. https://doi.org/10.1126/science.1175371.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang F. Post-translational modification control of HBV Biological processes. Front Microbiol. 2018;9:2661. https://doi.org/10.3389/fmicb.2018.02661.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Qian C, Cao X. Post-translational modification control of Innate Immunity. Immunity. 2016;45:15–30. https://doi.org/10.1016/j.immuni.2016.06.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, He C, Wang L, Ge B. Post-translational regulation of antiviral innate signaling. Eur J Immunol. 2017;47:1414–26. https://doi.org/10.1002/eji.201746959.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang K, Chen Y, Zhang Z, Zhao Y. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res. 2009;8:900–6. https://doi.org/10.1021/pr8005155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009;8:215–25. https://doi.org/10.1074/mcp.M800187-MCP200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10:M111012658. https://doi.org/10.1074/mcp.M111.012658.

    Article 
    CAS 

    Google Scholar
     

  • Mattiroli F, Sixma TK. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nat Struct Mol Biol. 2014;21:308–16. https://doi.org/10.1038/nsmb.2792.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146:1016–28. https://doi.org/10.1016/j.cell.2011.08.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschey MD, Zhao Y. Metabolic regulation by lysine Malonylation, Succinylation, and glutarylation. Mol Cell Proteomics. 2015;14:2308–15. https://doi.org/10.1074/mcp.R114.046664.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim GW, Yang XJ. Comprehensive lysine acetylomes emerging from bacteria to humans. Trends Biochem Sci. 2011;36:211–20. https://doi.org/10.1016/j.tibs.2010.10.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon OK, Kim S, Lee S. Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos. Electrophoresis. 2016;37:3137–45. https://doi.org/10.1002/elps.201600210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Q, Liu P, Wang J, Wang Y, Hou L, Gu W, Wang W. Systematic analysis of the lysine acetylome of the pathogenic bacterium Spiroplasma eriocheiris reveals acetylated proteins related to metabolism and helical structure. J Proteom. 2016;148:159–69. https://doi.org/10.1016/j.jprot.2016.08.001.

    Article 
    CAS 

    Google Scholar
     

  • Zhou H, Finkemeier I, Guan W, Tossounian MA, Wei B, Young D, Huang J, Messens J, Yang X, Zhu J, Wilson MH, Shen W, Xie Y, Foyer CH. Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves. Plant Cell Environ. 2018;41:1139–53. https://doi.org/10.1111/pce.13100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Cao J, Gao X, Zhou Y, Wen L, Yang X, Yao X, Ren J, Xue Y. CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res. 2011;39:D1029–34. https://doi.org/10.1093/nar/gkq939.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon OK, Sim J, Kim SJ, Oh HR, Nam DH, Lee S. Global proteomic analysis of protein acetylation affecting metabolic regulation in Daphnia pulex. Biochimie. 2016;121:219–27. https://doi.org/10.1016/j.biochi.2015.12.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, Li Z, Xu Y. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun. 2015;6:7023. https://doi.org/10.1038/ncomms8023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng Q, Su Z, Song S, Chiu H, Zhang B, Yi L, Tian M, Wang H. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation. Int J Mol Med. 2016;38:812–22. https://doi.org/10.3892/ijmm.2016.2691.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao D, Fukuyama S, Sakai-Tagawa Y, Takashita E, Shoemaker JE, Kawaoka Y. C646, a Novel p300/CREB-Binding protein-specific inhibitor of histone acetyltransferase, attenuates influenza a virus infection. Antimicrob Agents Chemother. 2015;60:1902–6. https://doi.org/10.1128/AAC.02055-15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Zhao L, Yang Y, Bode L, Huang H, Liu C, Huang R, Zhang L, Wang X, Liu S, Zhou J, Li X, He T, Cheng Z, Xie P. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells. Virology. 2014;464–465:196–205. https://doi.org/10.1016/j.virol.2014.06.040.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giese S, Ciminski K, Bolte H, Moreira EA, Lakdawala S, Hu Z, David Q, Kolesnikova L, Gotz V, Zhao Y, Dengjel J, Chin YE, Xu K, Schwemmle M. Role of influenza a virus NP acetylation on viral growth and replication. Nat Commun. 2017;8:1259. https://doi.org/10.1038/s41467-017-01112-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray LA, Sheng X, Cristea IM. Orchestration of protein acetylation as a toggle for cellular defense and virus replication. Nat Commun. 2018;9:4967. https://doi.org/10.1038/s41467-018-07179-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Tang J, Pei R, Gao X, Guo J, Xu C, Wang Y, Wang Q, Wu C, Zhou Y, Hu X, Zhao H, Chen X, Chen J. Host HDAC4 regulates the antiviral response by inhibiting the phosphorylation of IRF3. J Mol Cell Biol. 2019;11:158–69. https://doi.org/10.1093/jmcb/mjy035.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren T, Chen H, Liu X, Wang Y, Fan A, Qi L, Pan L, Bai W, Zhang Y, Sun Y. ID1 inhibits foot-and-mouth disease virus replication via targeting of interferon pathways. FEBS J. 2021;288:4364–81. https://doi.org/10.1111/febs.15725.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pozzi B, Bragado L, Mammi P, Torti MF, Gaioli N, Gebhard LG, Garcia Sola ME, Vaz-Drago R, Iglesias NG, Garcia CC, Gamarnik AV, Srebrow A. Dengue virus targets RBM10 deregulating host cell splicing and innate immune response. Nucleic Acids Res. 2020;48:6824–38. https://doi.org/10.1093/nar/gkaa340.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng X, Dou Y, Cai X. Ultrastructural features of PPRV infection in Vero cells. Virol Sin. 2014;29:311–3. https://doi.org/10.1007/s12250-014-3494-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Qian G, Yi X, Li X, Liu W. Systematic analysis of the lysine acetylome in Candida albicans. J Proteome Res. 2016;15:2525–36. https://doi.org/10.1021/acs.jproteome.6b00052.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei ZQ, Zhang YH, Ke CZ, Chen HX, Ren P, He YL, Hu P, Ma DQ, Luo J, Meng ZJ. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol. 2017;23:6252–60. https://doi.org/10.3748/wjg.v23.i34.6252.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manjunath S, Mishra BP, Mishra B, Sahoo AP, Tiwari AK, Rajak KK, Muthuchelvan D, Saxena S, Santra L, Sahu AR, Wani SA, Singh RP, Singh YP, Pandey A, Kanchan S, Singh RK, Kumar GR, Janga SC. Comparative and temporal transcriptome analysis of peste des petits ruminants virus infected goat peripheral blood mononuclear cells. Virus Res. 2017;229:28–40. https://doi.org/10.1016/j.virusres.2016.12.014.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Wu J, Cao X, Zhou J, Yin S, Yang S, Feng Q, Du P, Liu Y, Shang Y, Liu X. Proteomic analysis of murine bone marrow derived dendritic cells in response to peste des petits ruminants virus. Res Vet Sci. 2019;125:195–204. https://doi.org/10.1016/j.rvsc.2019.06.011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Wu J, Liu D, Du G, Liu Y, Shang Y, Liu X. Transcriptional profiles of murine bone marrow-derived dendritic cells in response to Peste des Petits Ruminants Virus. Vet Sci. 2019;6. https://doi.org/10.3390/vetsci6040095.

  • Kim JK, Fahad AM, Shanmukhappa K, Kapil S. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J Virol. 2006;80:689–96. https://doi.org/10.1128/JVI.80.2.689-696.2006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das S, Ravi V, Desai A. Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line. Virus Res. 2011;160:404–8. https://doi.org/10.1016/j.virusres.2011.06.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du N, Cong H, Tian H, Zhang H, Zhang W, Song L, Tien P. Cell surface vimentin is an attachment receptor for enterovirus 71. J Virol. 2014;88:5816–33. https://doi.org/10.1128/JVI.03826-13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu YT, Chien SC, Chen IY, Lai CT, Tsay YG, Chang SC, Chang MF. Surface vimentin is critical for the cell entry of SARS-CoV. J Biomed Sci. 2016;23:14. https://doi.org/10.1186/s12929-016-0234-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharya B, Noad RJ, Roy P. Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress. Virol J. 2007;4:7. https://doi.org/10.1186/1743-422X-4-7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Gao N, Wang JL, Tian YP, Chen ZT, An J. Vimentin is required for dengue virus serotype 2 infection but microtubules are not necessary for this process. Arch Virol. 2008;153:1777–81. https://doi.org/10.1007/s00705-008-0183-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fay N, Pante N. The intermediate filament network protein, vimentin, is required for parvoviral infection. Virology. 2013;444:181–90. https://doi.org/10.1016/j.virol.2013.06.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teo CS, Chu JJ. Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. J Virol. 2014;88:1897–913. https://doi.org/10.1128/JVI.01249-13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Shi H, Chen J, Shi D, Dong H, Feng L. Identification of the interaction between vimentin and nucleocapsid protein of transmissible gastroenteritis virus. Virus Res. 2015;200:56–63. https://doi.org/10.1016/j.virusres.2014.12.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Risco C, Rodriguez JR, Lopez-Iglesias C, Carrascosa JL, Esteban M, Rodriguez D. Endoplasmic reticulum-golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly. J Virol. 2002;76:1839–55. https://doi.org/10.1128/jvi.76.4.1839-1855.2002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanovic S, Windsor M, Nagata KI, Inagaki M, Wileman T. Vimentin rearrangement during african swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J Virol. 2005;79:11766–75. https://doi.org/10.1128/JVI.79.18.11766-11775.2005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong D, Zhu S, Miao Q, Zhu J, Tang A, Qi R, Liu T, Yin D, Liu G. Nucleolin (NCL) inhibits the growth of peste des petits ruminants virus. J Gen Virol. 2020;101:33–43. https://doi.org/10.1099/jgv.0.001358.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su PY, Wang YF, Huang SW, Lo YC, Wang YH, Wu SR, Shieh DB, Chen SH, Wang JR, Lai MD, Chang CF. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol. 2015;89:4527–38. https://doi.org/10.1128/JVI.03498-14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Y, Du Y, Wang G, Li K. Non-structural protein 1 of H3N2 influenza a virus induces nucleolar stress via interaction with nucleolin. Sci Rep. 2017;7:17761. https://doi.org/10.1038/s41598-017-18087-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das S, Cong R, Shandilya J, Senapati P, Moindrot B, Monier K, Delage H, Mongelard F, Kumar S, Kundu TK, Bouvet P. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors. FEBS Lett. 2013;587:417–24. https://doi.org/10.1016/j.febslet.2013.01.035.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svinkina T, Gu H, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA. Deep, quantitative Coverage of the lysine Acetylome using Novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics. 2015;14:2429–40. https://doi.org/10.1074/mcp.O114.047555.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pehar M, Ball LE, Sharma DR, Harlan BA, Comte-Walters S, Neely BA, Vargas MR. Changes in protein expression and lysine Acetylation Induced by decreased glutathione levels in astrocytes. Mol Cell Proteomics. 2016;15:493–505. https://doi.org/10.1074/mcp.M115.049288.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawaguchi A. [Dynamics of the influenza virus genome regulated by cellular host factors]. Uirusu. 2017;67:59–68. https://doi.org/10.2222/jsv.67.59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganaie SS, Zou W, Xu P, Deng X, Kleiboeker S, Qiu J. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathog. 2017;13:e1006370. https://doi.org/10.1371/journal.ppat.1006370.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabral P, Uppal T, Rossetto CC, Verma SC. Minichromosome maintenance proteins cooperate with LANA during the G1/S phase of the cell cycle to support viral DNA replication. J Virol. 2019;93. https://doi.org/10.1128/JVI.02256-18.

  • Takei Y, Assenberg M, Tsujimoto G, Laskey R. The MCM3 acetylase MCM3AP inhibits initiation, but not elongation, of DNA replication via interaction with MCM3. J Biol Chem. 2002;277:43121–5. https://doi.org/10.1074/jbc.C200442200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jheng JR, Wang SC, Jheng CR, Horng JT. Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication. Emerg Microbes Infect. 2016;5:e23. https://doi.org/10.1038/emi.2016.20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montalbano R, Honrath B, Wissniowski TT, Elxnat M, Roth S, Ocker M, Quint K, Churin Y, Roederfeld M, Schroeder D, Glebe D, Roeb E, Di Fazio P. Exogenous hepatitis B virus envelope proteins induce endoplasmic reticulum stress: involvement of cannabinoid axis in liver cancer cells. Oncotarget. 2016;7:20312–23. https://doi.org/10.18632/oncotarget.7950.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR. The interaction network of the chaperonin CCT. EMBO J. 2008;27:1827–39. https://doi.org/10.1038/emboj.2008.108.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol. 2008;15:1255–62. https://doi.org/10.1038/nsmb.1515.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pejanovic N, Hochrainer K, Liu T, Aerne BL, Soares MP, Anrather J. Regulation of nuclear factor kappaB (NF-kappaB) transcriptional activity via p65 acetylation by the chaperonin containing TCP1 (CCT). PLoS ONE. 2012;7:e42020. https://doi.org/10.1371/journal.pone.0042020.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin YF, Lee YF, Liang PH. Targeting beta-tubulin:CCT-beta complexes incurs Hsp90- and VCP-related protein degradation and induces ER stress-associated apoptosis by triggering capacitative Ca2 + entry, mitochondrial perturbation and caspase overactivation. Cell Death Dis. 2012;3:e434. https://doi.org/10.1038/cddis.2012.173.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trinidad AG, Muller PA, Cuellar J, Klejnot M, Nobis M, Valpuesta JM, Vousden KH. Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. Mol Cell. 2013;50:805–17. https://doi.org/10.1016/j.molcel.2013.05.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokota S, Yanagi H, Yura T, Kubota H. Cytosolic chaperonin is up-regulated during cell growth. Preferential expression and binding to tubulin at G(1)/S transition through early S phase. J Biol Chem. 1999;274:37070–8. https://doi.org/10.1074/jbc.274.52.37070.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inoue Y, Aizaki H, Hara H, Matsuda M, Ando T, Shimoji T, Murakami K, Masaki T, Shoji I, Homma S, Matsuura Y, Miyamura T, Wakita T, Suzuki T. Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology. 2011;410:38–47. https://doi.org/10.1016/j.virol.2010.10.026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Wu X, Zan J, Wu Y, Ye C, Ruan X, Zhou J. Cellular chaperonin CCTgamma contributes to rabies virus replication during infection. J Virol. 2013;87:7608–21. https://doi.org/10.1128/JVI.03186-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafirassou ML, Meertens L, Umana-Diaz C, Labeau A, Dejarnac O, Bonnet-Madin L, Kummerer BM, Delaugerre C, Roingeard P, Vidalain PO, Amara A. A Global Interactome Map of the Dengue Virus NS1 identifies virus restriction and dependency host factors. Cell Rep. 2018;22:1364. https://doi.org/10.1016/j.celrep.2018.01.038.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knowlton JJ, Fernandez de Castro I, Ashbrook AW, Gestaut DR, Zamora PF, Bauer JA, Forrest JC, Frydman J, Risco C, Dermody TS. The TRiC chaperonin controls reovirus replication through outer-capsid folding. Nat Microbiol. 2018;3:481–93. https://doi.org/10.1038/s41564-018-0122-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Huang WR, Chih WY, Chuang KP, Chang CD, Wu Y, Huang Y, Liu HJ. Cdc20 and molecular chaperone CCT2 and CCT5 are required for the muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis. Vet Microbiol. 2019;235:151–63. https://doi.org/10.1016/j.vetmic.2019.06.017.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo H. Interplay between the virus and the ubiquitin-proteasome system: molecular mechanism of viral pathogenesis. Curr Opin Virol. 2016;17:1–10. https://doi.org/10.1016/j.coviro.2015.09.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong F, You H, Kong D, Zheng K, Tang R. The interaction of hepatitis B virus with the ubiquitin proteasome system in viral replication and associated pathogenesis. Virol J. 2019;16:73. https://doi.org/10.1186/s12985-019-1183-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeom S, Jeong H, Kim SS, Jang KL. Hepatitis B virus X protein activates proteasomal activator 28 gamma expression via upregulation of p53 levels to stimulate virus replication. J Gen Virol. 2018;99:655–66. https://doi.org/10.1099/jgv.0.001054.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurdistani SK, Berk AJ. Adenovirus small e1a alters global patterns of histone modification. Science. 2008;321:1084–5. https://doi.org/10.1126/science.1155544.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suberbielle E, Stella A, Pont F, Monnet C, Mouton E, Lamouroux L, Monsarrat B, Gonzalez-Dunia D. Proteomic analysis reveals selective impediment of neuronal remodeling upon Borna disease virus infection. J Virol. 2008;82:12265–79. https://doi.org/10.1128/JVI.01615-08.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatakeyama D, Shoji M, Yamayoshi S, Yoh R, Ohmi N, Takenaka S, Saitoh A, Arakaki Y, Masuda A, Komatsu T, Nagano R, Nakano M, Noda T, Kawaoka Y, Kuzuhara T. Influenza a virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5. J Biol Chem. 2018;293:7126–38. https://doi.org/10.1074/jbc.RA117.001683.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang G, Nguyen D, Archin NM, Yukl SA, Mendez-Lagares G, Tang Y, Elsheikh MM, Thompson GR 3rd, Connor H-O, Margolis DJ, Wong DM JK and, Dandekar S. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest. 2018;128:1190–8. https://doi.org/10.1172/JCI98071.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatakeyama D, Ohmi N, Saitoh A, Makiyama K, Morioka M, Okazaki H, Kuzuhara T. Acetylation of lysine residues in the recombinant nucleoprotein and VP40 matrix protein of Zaire Ebolavirus by eukaryotic histone acetyltransferases. Biochem Biophys Res Commun. 2018;504:635–40. https://doi.org/10.1016/j.bbrc.2018.09.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Jiang X, Fu X, Qi Y, Zhu G. The involvement of histone H3 acetylation in bovine herpesvirus 1 replication in MDBK cells. Viruses. 2018;10. https://doi.org/10.3390/v10100525.

  • Mantyla E, Salokas K, Oittinen M, Aho V, Mantysaari P, Palmujoki L, Kalliolinna O, Ihalainen TO, Niskanen EA, Timonen J, Viiri K, Vihinen-Ranta M. Promoter-targeted histone acetylation of Chromatinized Parvoviral Genome is essential for the progress of infection. J Virol. 2016;90:4059–66. https://doi.org/10.1128/JVI.03160-15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link