Scientific Papers

Early selection of carrot somatic hybrids: a promising tool for species with high regenerative ability | Plant Methods


  • Schenk RU, Hildebrandt AC. Somatic hybridization: a new approach to genetic change. Am J Bot. 1968;55:731.


    Google Scholar
     

  • Pati PK, Sharma M, Ahuja PS. Rose protoplast isolation and culture and heterokaryon selection by immobilization in extra thin alginate film. Protoplasma. 2008;233:165–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krumbiegel G, Schieder O. Selection of somatic hybrids after fusion of protoplasts from Datura innoxia Mill. and Atropa belladonna L.. Planta. 1979;145:371–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Horita M, Morohashi H, Komai F. Production of fertile somatic hybrid plants between oriental hybrid lily and Lilium x formolongi. Planta. 2003;217:597–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari JK, Devi S, Ali N, Luthra SK, Kumar V, Bhardwaj V, et al. Progress in somatic hybridization research in potato during the past 40 years. Plant Cell Tiss Org. 2017;132:225–38.

    Article 

    Google Scholar
     

  • Begum F, Paul S, Bag N, Sikdar SR, Sen SK. Somatic hybrids between Brassica juncea (L). Czern and Diplotaxis harra (Forsk.) Boiss and the generation of backcross progenies. Theor Appl Genet. 1995;91:1167–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto K, Duarte Vilarinhos A, Oka S. Somatic hybridization by electrofusion of banana protoplasts. Euphytica. 2002;125:317–24.

    Article 
    CAS 

    Google Scholar
     

  • Kisaka H, Kisaka M, Kanno A, Kameya T. Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theor Appl Genet. 1997;94:221–6.

    Article 

    Google Scholar
     

  • Johnson AT, Veilleux RE. Somatic hybridization and applications in plant breeding. In: Jules J, editor. Plant breeding reviews. New York: Wiley; 2001. p. 167–225.


    Google Scholar
     

  • de Bona CM, de Carvalho DC, Stelly DM, Creighton Miller J, Louzada ES. Symmetric and asymmetric somatic hybridization in citrus: review. Citrus Res Technol. 2011;32:139–53.

    Article 

    Google Scholar
     

  • Grambow HJ, Kao KN, Miller RA, Gamborg OL. Cell division and plant development from protoplasts of carrot cell suspension cultures. Planta. 1972;103:348–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kameya T, Uchimiya H. Embryoids derived from isolated protoplasts of carrot. Planta. 1972;103:356–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dirks R, Sidorov V, Tulmans C. A new protoplast culture system in Daucus carota L. and its applications for mutant selection and transformation. Theor Appl Genet. 1996;93:809–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grzebelus E, Szklarczyk M, Baranski R. An improved protocol for plant regeneration from leaf- and hypocotyl-derived protoplasts of carrot. Plant Cell Tiss Org. 2012;109:101–9.

    Article 

    Google Scholar
     

  • Sivanesan I, Hayward A, Bandaralage JH, O’brien CM, Ranaware AS, Kunchge NS, et al. Protoplast technology and somatic hybridisation in the family Apiaceae. Plants. 2023;12:1060.

    Article 

    Google Scholar
     

  • Grzebelus E, Skop L. Effect of β-lactam antibiotics on plant regeneration in carrot protoplast cultures. In Vitro Cell Dev Biol. 2014;50:568–75.

    Article 
    CAS 

    Google Scholar
     

  • Maćkowska K, Jarosz A, Grzebelus E. Plant regeneration from leaf-derived protoplasts within the Daucus genus: effect of different conditions in alginate embedding and phytosulfokine application. Plant Cell Tiss Org. 2014;117:241–52.

    Article 

    Google Scholar
     

  • Kiełkowska A, Grzebelus E, Lis-Krzyścin A, Maćkowska K. Application of the salt stress to the protoplast cultures of the carrot (Daucus carota L.) and evaluation of the response of regenerants to soil salinity. Plant Cell Tiss Org. 2019;137:379–95.

    Article 

    Google Scholar
     

  • Bruznican S, Eeckhaut T, Van Huylenbroeck J, De Keyser E, De Clercq H, Geelen D. An asymmetric protoplast fusion and screening method for generating celeriac cybrids. Sci Rep. 2021;11:4553.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kisaka H, Lee H, Kisaka M, Kanno A, Kang K, Kameya T. Production and analysis of asymmetric hybrid plants between monocotyledon (Oryza sativa L.) and dicotyledon (Daucus carota L.). Theor Appl Genet. 1994;89:365–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanno-Suenaga L, Ichikawa H, Imamura J. Transfer of the CMS trait in Daucus carota L. by donor-recipient protoplast fusion. Theor Appl Genet. 1988;76:855–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han L, Zhou C, Shi J, Zhi D, Xia G. Ginsenoside Rb1 in asymmetric somatic hybrid calli of Daucus carota with Panax quinquefolius. Plant Cell Rep. 2009;28:627–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cocking EC. A method for the isolation of plant protoplasts and vacuoles. Nature. 1960;187:962–3.

    Article 

    Google Scholar
     

  • Takebe I, Labib G, Melchers G. Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften. 1971;58:318–20.

    Article 

    Google Scholar
     

  • Wallin A, Glimelius K, Eriksson T. The induction of aggregation and fusion of Daucus carota protoplasts by polyethylene glycol. Z Pflanzenphysiol. 1974;74:64–80.

    Article 
    CAS 

    Google Scholar
     

  • Kao KN, Michayluk MR. A method for high-frequency intergeneric fusion of plant protoplasts. Planta. 1974;115:355–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaeffer P, Cami B, Hotchkiss RD. Fusion of bacterial protoplasts. Proc Natl Acad Sci USA. 1976;73:2151–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pontecorvo G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genet. 1975;1:397–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann U, Scheurich P. High frequency fusion of plant protoplasts by electric fields. Planta. 1981;151:26–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bates GW, Hasenkampf CA. Culture of plant somatic hybrids following electrical fusion. Theor Appl Genet. 1985;70:227–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blackhall NW, Davey MR, Power JB. Applications of protoplast technology. In: Dixon RA, Gonzales RA, editors. Plant cell culture: a practical approach. Oxford: IRL Press at Oxford University Press; 1994. p. 41–8.


    Google Scholar
     

  • Barsby TL, Yarrow SA, Shepard JF. Heterokaryon identification through simultaneous fluorescence of tetramethylrhodamine isothiocyanate and fluorescein isothiocyanate labelled protoplasts. Stain Technol. 1984;59:217–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durieu P, Ochatt SJ. Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot. 2000;51:1237–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Geerts P, Druart P, Ochatt SJ, Baudoin JP. Protoplast fusion technology for somatic hybridisation in Phaseolus. Biotechnol Agron Soc Environ. 2008;12:41–6.


    Google Scholar
     

  • Nair AS, Chee HT, Schwarzacher T, Harrison PH. Genome classification of banana cultivars from South India using IRAP markers. Euphytica. 2005;144:285–90.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Ramakrishnan M, Vinod KK, Kalendar R, Yrjälä K, Zhou M. Development and deployment of high-throughput retrotransposon-based markers reveal genetic diversity and population structure of asian bamboo. Forests. 2019;11:31.

    Article 
    CAS 

    Google Scholar
     

  • Singh S, Nandha PS, Singh J. Transposon-based genetic diversity assessment in wild and cultivated barley. Crop J. 2017;5:296–304.

    Article 

    Google Scholar
     

  • Stelmach K, Macko-Podgórni A, Machaj G, Grzebelus D. Miniature inverted repeat transposable element insertions provide a source of intron length polymorphism markers in the carrot (Daucus carota L.). Front Plant Sci. 2017;8:725.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, et al. IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet. 2007;48:107–13.

    Article 
    PubMed 

    Google Scholar
     

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ. Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genom. 2004;271:91–7.

    Article 
    CAS 

    Google Scholar
     

  • Godel-Jędrychowska K, Maćkowska K, Kurczyńska E, Grzebelus E. Composition of the reconstituted cell wall in protoplast-derived cells of Daucus is affected by phytosulfokine (PSK). Int J Mol Sci. 2019;20:5490.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudits D, Maroy E, Praznovszky T, Olah Z, Gyorgyey J, Cella R. Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: Regeneration of fertile plants. Proc Natl Acad Sci USA. 1987;84:8434–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudits D, Hadlaczky G, Lévi E, Fejér O, Haydu Z, Lázár G. Somatic hybridisation of Daucus carota and D. capillifolius by protoplast fusion. Theor Appl Genet. 1977;51:127–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ichikawa H, Tanno-Suenaga L, Imamura J. Selection of Daucus cybrids based on metabolic complementation between X-irradiated D. capillifolius and iodoacetamide-treated D. carota by somatic cell fusion. Theor Appl Genet. 1987;74:746–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kisaka H, Kameya T. Production of somatic hybrids between Daucus carota L. and Nicotiana tabacum. Theor Appl Genet. 1994;88:75–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanchanapoom K, Brightman AO, Grimes HD, Boss WF. A novel method for monitoring protoplast fusion. Protoplasma. 1985;124:65–70.

    Article 

    Google Scholar
     

  • Kanchanapoom K, Boss WF. The effect of fluorescent labeling on calcium-induced fusion of fusogenic carrot protoplasts. Plant Cell Rep. 1986;5:252–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Widholm JM. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 1972;47:189–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J. Progress in plant protoplast research. Planta. 2013;238:991–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith JA, Green CE, Gengenbach BG. Feeder layer support of low density populations of Zea mays L. suspension cells. Plant Sci Lett. 1984;36:67–72.

    Article 

    Google Scholar
     

  • Ludwig SR, Somers DA, Petersen WL, Pohlman RF, Zarowitz MA, Gengenbach BG, et al. High frequency callus formation from maize protoplasts. Theor Appl Genet. 1985;71:344–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walters TW, Earle ED. A simple, versatile feeder layer system for Brassica oleracea protoplast culture. Plant Cell Rep. 1990;9:316–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall RD, Pedersen C, Krens FA. Improvement of protoplast culture protocols for Beta vulgaris L. (sugar beet). Plant Cell Rep. 1993;12:339–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Assani A, Chabane D, Foroughi-Wehr B, Wenzel G. An improved protocol for microcallus production and whole plant regeneration from recalcitrant banana protoplasts (Musa spp.). Plant Cell Tiss Org. 2006;85:257–64.

    Article 

    Google Scholar
     

  • Klimek-Chodacka M, Kadluczka D, Lukasiewicz A, Malec-Pala A, Baranski R, Grzebelus E. Effective callus induction and plant regeneration in callus and protoplast cultures of Nigella damascena L. Plant Cell Tiss Org. 2020;143:693–707.

    Article 
    CAS 

    Google Scholar
     

  • Kiełkowska A, Adamus A. Exogenously applied polyamines reduce reactive oxygen species, enhancing cell division and the shoot regeneration from Brassica oleracea L. var. capitata protoplasts. Agronomy. 2021;11:735.

    Article 

    Google Scholar
     

  • Kiełkowska A, Adamus A. Peptide growth factor phytosulfokine-α stimulates cell divisions and enhances regeneration from B oleracea var. capitata L. protoplast culture. J Plant Growth Regul. 2019;38:931–44.

    Article 

    Google Scholar
     

  • Sahab S, Hayden MJ, Mason J, Spangenberg G. Mesophyll protoplasts and PEG-mediated transfections: transient assays and generation of stable transgenic canola plants. Methods Mol Biol. 2019;1864:131–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong YY, Lee HY, Kim SW, Noh YS, Seo PJ. Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. Plant Methods. 2021;17:1–16.

    Article 

    Google Scholar
     

  • Lian YJ, Lin GZ, Zhao XM, Lim HT. Production and genetic characterization of somatic hybrids between leaf mustard (Brassica juncea) and broccoli (Brassica oleracea). In Vitro Cell Dev Biol. 2011;47:289–96.

    Article 

    Google Scholar
     

  • Bajaj YP. Recent advances in the isolation and culture of protoplasts and their implications in crop Improvement. In: Bajaj YP, editor. Plant protoplasts and genetic engineering I. Berlin: Springer; 1989. p. 3–22.

    Chapter 

    Google Scholar
     

  • Kanwar K, Bhardwaj A, Deepika R. Efficient regeneration of plantlets from callus and mesophyll derived protoplasts of Robinia pseudoacacia L. Plant Cell Tiss Org. 2009;96:95–103.

    Article 

    Google Scholar
     

  • Gieniec M, Siwek J, Oleszkiewicz T, Maćkowska K, Klimek-Chodacka M, Grzebelus E, et al. Real-time detection of somatic hybrid cells during electrofusion of carrot protoplasts with stably labelled mitochondria. Sci Rep. 2020;10:18811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann U. Electrofusion of cells: principles and industrial potential. Trends Biotechnol. 1983;1:149–55.

    Article 

    Google Scholar
     

  • Nea L, Bates G. Factors affecting protoplast electrofusion efficiency. Plant Cell Rep. 1987;6:337–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bates G. Electrofusion of plant protoplasts and the production of somatic hybrids. In: Chang D, Chassy B, Saunders J, Sowers A, editors. Guide to electroporation and electrofusion. Academic Press Inc.; 1992. p. 249–64.


    Google Scholar
     

  • Cullis PR, Hope MJ. Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature. 1978;271:672–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamamoto T, Nakajima Y, Oeda K. Morphological changes in homeotic cytoplasmic male-sterile carrots combined with fertile cytoplasm by asymmetrical cell fusion. Plant Cell Rep. 2000;19:363–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.

    Article 
    CAS 

    Google Scholar
     

  • Menczel L, Nagy F, Kiss Z, Maliga P. Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum + Nicotiana knightiana: correlation of resistance to N. tabacum plastids. Theor Appl Genet. 1981;59:191–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider C, Rasband W, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briard M, Clerc V, Grzebelus D, Senalik D, Simon PW. Modified protocols for rapid carrot genomic DNA extraction and AFLP™ analysis using silver stain or radioisotopes. Plant Mol Biol Report. 2000;18:235–41.

    Article 
    CAS 

    Google Scholar
     



  • Source link