Scientific Papers

Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice | Genes & Nutrition


  • Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.

    Article 
    PubMed 

    Google Scholar
     

  • Crean AJ, Senior AM. High-fat diets reduce male reproductive success in animal models: a systematic review and meta-analysis. Obes Rev. 2019;20:921–33.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Y, Zhu H, Wu HY, Jin LY, Chen B, Pang HY, Ming ZH, Cheng Y, Zhou CL, Guo MX, Huang YT, Yu DQ, Sheng JZ, Huang HF. Diet-induced paternal obesity impairs cognitive function in offspring by mediating epigenetic modifications in spermatozoa. Obesity (Silver Spring). 2018;26:1749–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Binder NK, Sheedy JR, Hannan NJ, Gardner DK. Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model. Mol Hum Reprod. 2015;21:424–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pepin AS, Lafleur C, Lambrot R, Dumeaux V, Kimmins S. Sperm Histone H3 Lysine 4 tri-methylation serves as a metabolic sensor of paternal obesity and is associated with the inheritance of metabolic dysfunction. Mol Metab. 2022;59:101463.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, Ruf M, Rajewsky N, Reuter G, Iovino N, Ribeiro C, Alenius M, Heyne S, Vavouri T, Pospisilik JA. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159:1352–64.

    Article 
    PubMed 

    Google Scholar
     

  • Fullston T, Ohlsson Teague EM, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27:4226–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Binder NK, Mitchell M, Gardner DK. Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst. Reprod Fertil Dev. 2012;24:804–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fullston T, Shehadeh H, Sandeman LY, Kang WX, Wu LL, Robker RL, McPherson NO, Lane M. Female offspring sired by diet induced obese male mice display impaired blastocyst development with molecular alterations to their ovaries, oocytes and cumulus cells. J Assist Reprod Genet. 2015;32:725–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature. 2010;467:963–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terashima M, Barbour S, Ren J, Yu W, Han Y, Muegge K. Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics. 2015;10:861–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod. 2018;99:252–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanova E, Canovas S, Garcia-Martinez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, Kelsey G, Coy P. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin Epigenetics. 2020;12:64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, Schildkraut JM, Murtha AP, Iversen ES, Hoyo C. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene. 2012;494:36–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Xu L, He F. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril. 2010;93:2729–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakian S, Louie K, Wong EC, Havelock J, Kashyap S, Rowe T, Taylor B, Ma S. Altered gene expression of H19 and IGF2 in placentas from ART pregnancies. Placenta. 2015;36:1100–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu DJ, Zhang F, Chen Y, Jin Y, Zhang YL, Chen SB, Xie YY, Huang QH, Zhao WL, Wang L, Xu PF, Chen Z, Chen SJ, Li B, Zhang A, Sun XJ. setd2 knockout zebrafish is viable and fertile: differential and developmental stress-related requirements for Setd2 and histone H3K36 trimethylation in different vertebrate animals. Cell Discov. 2020;6:72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics. 2021;13:199.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park IY, Powell RT, Tripathi DN, Dere R, Ho TH, Blasius TL, Chiang YC, Davis IJ, Fahey CC, Hacker KE, Verhey KJ, Bedford MT, Jonasch E, Rathmell WK, Walker CL. Dual chromatin and cytoskeletal remodeling by SETD2. Cell. 2016;166:950–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu P, Luo S, Du Y, Zhang Y, Song X, Yuan X, Lin Z, Li Y, Liu E. Extracellular vesicles and melatonin benefit embryonic develop by regulating reactive oxygen species and 5-methylcytosine. J Pineal Res. 2020;68:e12635.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Qu P, Zhou C, Liu X, Ma X, Wang M, Wang Y, Su J, Liu J, Zhang Y. MicroRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming. J Biol Chem. 2017;292:15916–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu M, Sun XJ, Zhang YL, Kuang Y, Hu CQ, Wu WL, Shen SH, Du TT, Li H, He F, Xiao HS, Wang ZG, Liu TX, Lu H, Huang QH, Chen SJ, Chen Z. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci U S A. 2010;107:2956–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding N, Zhang X, Zhang XD, Jing J, Liu SS, Mu YP, Peng LL, Yan YJ, Xiao GM, Bi XY, Chen H, Li FH, Yao B, Zhao AZ. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut. 2020;69:1608–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DiFiore JV, Ptacek TS, Wang Y, Li B, Simon JM, Strahl BD. Unique and shared roles for histone H3K36 methylation states in transcription regulation functions. Cell Rep. 2020;31:107751.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei J, Nie Q, Chen DB. A single-cell epigenetic model for paternal psychological stress-induced transgenerational reprogramming in offspring. Biol Reprod. 2018;98:846–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Meyer DH, Schumacher B. Inheritance of paternal DNA damage by histone-mediated repair restriction. Nature. 2023;613:365–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update. 2015;21:194–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deshpande SS, Nemani H, Arumugam G, Ravichandran A, Balasinor NH. High-fat diet-induced and genetically inherited obesity differentially alters DNA methylation profile in the germline of adult male rats. Clin Epigenetics. 2020;12:179.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T, Paquet M, Suderman M, Hallett M, Kimmins S. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun. 2013;4:2889.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddeek B, Mauduit C, Simeoni U, Benahmed M. Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. Mutat Res Rev Mutat Res. 2018;778:38–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Chen S, Pang D, Zhou J, Xu X, Yang S, Huang Z, Yu B. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin. 2022;15:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bomans K, Schenz J, Tamulyte S, Schaack D, Weigand MA, Uhle F. Paternal sepsis induces alterations of the sperm methylome and dampens offspring immune responses-an animal study. Clin Epigenetics. 2018;10:89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Ren L, Sun X, Zhang Z, Liu J, Xin Y, Yu J, Jia Y, Sheng J, Hu GF, Zhao R, He B. Angiogenin mediates paternal inflammation-induced metabolic disorders in offspring through sperm tsRNAs. Nat Commun. 2021;12:6673.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrido N, Cruz F, Egea RR, Simon C, Sadler-Riggleman I, Beck D, Nilsson E, Ben Maamar M, Skinner MK. Sperm DNA methylation epimutation biomarker for paternal offspring autism susceptibility. Clin Epigenetics. 2021;13:6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keyhan S, Burke E, Schrott R, Huang Z, Grenier C, Price T, Raburn D, Corcoran DL, Soubry A, Hoyo C, Murphy SK. Male obesity impacts DNA methylation reprogramming in sperm. Clin Epigenetics. 2021;13:17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donkin I, Barres R. Sperm epigenetics and influence of environmental factors. Mol Metab. 2018;14:1–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update. 2020;26:841–73.

    Article 
    PubMed 

    Google Scholar
     

  • Schubeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Looney TJ, Zhang L, Chen CH, Lee JH, Chari S, Mao FF, Pelizzola M, Zhang L, Lister R, Baker SW, Fernandes CJ, Gaetz J, Foshay KM, Clift KL, Zhang Z, Li WQ, Vallender EJ, Wagner U, Qin JY, Michelini KJ, Bugarija B, Park D, Aryee E, Stricker T, Zhou J, White KP, Ren B, Schroth GP, Ecker JR, Xiang AP, Lahn BT. Systematic mapping of occluded genes by cell fusion reveals prevalence and stability of cis-mediated silencing in somatic cells. Genome Res. 2014;24:267–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schubeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356(6337):eaaj2239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mar BG, Chu SH, Kahn JD, Krivtsov AV, Koche R, Castellano CA, Kotlier JL, Zon RL, McConkey ME, Chabon J, Chappell R, Grauman PV, Hsieh JJ, Armstrong SA, Ebert BL. SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. Blood. 2017;130:2631–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Gu L, Li GM. H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J Biol Chem. 2018;293:7811–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho S, Vitor AC, Sridhara SC, Martins FB, Raposo AC, Desterro JM, Ferreira J, de Almeida SF. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. Elife. 2014;3:e02482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link