Scientific Papers

Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis | EvoDevo


  • Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature. 2006;439:965–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H. Additional molecular support for the new chordate phylogeny. Genesis. 2008;46:592–604.

    Article 
    PubMed 

    Google Scholar
     

  • Satoh N, Tagawa K, Takahashi H. How was the notochord born? Evol Dev. 2012;14:56–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inoue J, Nakashima K, Satoh N. ORTHOSCOPE analysis reveals the presence of the cellulose synthase gene in all tunicate genomes but not in other animal genomes. Genes. 2019;10:294.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satoh, N. 2014. Developmental Genomics of Ascidians, Hoboken, New Jersey, Wiley-Blackwell, 9781118656181.

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science. 2002;298:2157–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holland LZ. Tunicates. Curr Biol. 2016;26:R146–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satoh N. Origin and Evolution of Chordates. New York: Academic Press; 2016. p. 9780128099346.


    Google Scholar
     

  • Satoh N, Rokhsar D, Nishikawa T. Chordate evolution and the three-phylum system. Proc Royal Soc B Biol Sci. 2014;281:20141729.

    Article 

    Google Scholar
     

  • Matthysse AG, Deschet K, Williams M, Marry M, White AR, Smith WC. A functional cellulose synthase from ascidian epidermis. Proc Natl Acad Sci. 2004;101:986–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima K, Nishino A, Horikawa Y, Hirose E, Sugiyama J, Satoh N. The crystalline phase of cellulose changes under developmental control in a marine chordate. Cell Mol Life Sci. 2011;68:1623–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakashima K, Yamada L, Satou Y, Azuma J, Satoh N. The evolutionary origin of animal cellulose synthase. Dev Genes Evol. 2004;214:81–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagane Y, Zech K, Bouquet JM, Schmid M, Bal U, Thompson EM. Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans. Development. 2010;137:1483–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasakura Y, Nakashima K, Awazu S, Matsuoka T, Nakayama A, Azuma J, Satoh N. Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci USA. 2005;102:15134–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattachan P, Dong B. Origin and evolutionary implications of introns from analysis of cellulose synthase gene. J Syst Evol. 2017;55:142–8.

    Article 

    Google Scholar
     

  • Li K-L, Nakashima K, Inoue J, Satoh N. Phylogenetic analyses of glycosyl hydrolase family 6 genes in tunicates: possible horizontal transfer. Genes. 2020;11:937.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koivula A, Ruohonen L, Wohlfahrt G, Reinikainen T, Teeri TT, Piens K, Claeyssens M, Weber M, Vasella A, Becker D, et al. The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. J Am Chem Soc. 2002;124:10015–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasakura Y, Ogura Y, Treen N, Yokomori R, Park SJ, Nakai K, Saiga H, Sakuma T, Yamamoto T, Fujiwara S, et al. Transcriptional regulation of a horizontally transferred gene from bacterium to chordate. Proc Biol Sci. 2016;283:20161712.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imai KS, Hikawa H, Kobayashi K, Satou Y. Tfap2 and Sox1/2/3 cooperatively specify ectodermal fates in ascidian embryos. Development. 2017;144(1):33–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Davison A, Blaxter M. Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol. 2005;22:1273–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo N, Watanabe H, Sugimura M. Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc Royal Soc London. 2003;270:S69-72.

    Article 
    CAS 

    Google Scholar
     

  • Sade YB, Gonçalves CS, Scapin SMN, Pinheiro GL, Flatschart RB, De Souza W, Heise N, De Alcantara Machado E. Identification and characterization of a glycoside hydrolase family 9 member from the digestive gland of the snail Achatina fulica. BioEnergy Res. 2021;15:466–78.

    Article 

    Google Scholar
     

  • Satou Y, Nakamura R, Yu D, Yoshida R, Hamada M, Fujie M, Hisata K, Takeda H, Satoh N. A nearly complete genome of Ciona intestinalis type A (C. robusta) reveals the contribution of inversion to chromosomal evolution in the genus Ciona. Genome Biol Evol. 2019;11:3144–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satou Y, Sato A, Yasuo H, Mihirogi Y, Bishop J, Fujie M, Kawamitsu M, Hisata K, Satoh N, O’neill R. Chromosomal inversion polymorphisms in two sympatric ascidian lineages. Genome Biol Evol. 2021;13(6): evab068.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoguchi E, Kawashima T, Satou Y, Hamaguchi M, Sin-I T, Kohara Y, Putnam N, Rokhsar DS, Satoh N. Chromosomal mapping of 170 BAC clones in the ascidian Ciona intestinalis. Genome Res. 2006;16:297–303.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao C, Lemaire LA, Wang W, Yoon PH, Choi YA, Parsons LR, Matese JC, Wang W, Levine M, Chen K. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature. 2019;571:349–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Karabinos A, Zimek A, Meyer M, Riemer D, Hudson C, Lemaire P, Weber K. Cytoplasmic intermediate filament protein expression in tunicate development: a specific marker for the test cells. Eur J Cell Biol. 2002;81:302–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci. 1998;95:10570–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39:9283–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehlke C, Zierau O, Hannig C. Salivary amylase—the enzyme of unspecialized euryphagous animals. Arch Oral Biol. 2015;60:1162–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buisson G, Duée E, Haser R, Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987;6:3909–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno M, Kimura M, Miyazaki H, Okawa K, Onuki R, Nemoto C, Tabata E, Wakita S, Kashimura A, Sakaguchi M, et al. Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Sci Rep. 2016;6:37756.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel S, Goyal A. Chitin and chitinase: role in pathogenicity, allergenicity and health. Int J Biol Macromol. 2017;97:331–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Å resolution. Nature. 1965;206:757–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uversky VN, Wohlkönig A, Huet J, Looze Y, Wintjens R. Structural relationships in the lysozyme superfamily: significant evidence for glycoside hydrolase signature motifs. PLoS ONE. 2010;5: e15388.

    Article 

    Google Scholar
     

  • Gmachl M, Kreil G. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc Natl Acad Sci. 1993;90:3569–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modelski MJ, Menlah G, Wang Y, Dash S, Wu K, Galileo DS, Martin-Deleon PA. Hyaluronidase 2: a novel germ cell hyaluronidase with epididymal expression and functional roles in mammalian sperm. Biol Reprod. 2014;91:109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical J. 1991;280:309–16.

    Article 
    CAS 

    Google Scholar
     

  • Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997;7:637–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carbohydrate Active Enzymes database [Online]. Available: http://www.cazy.org/. Accessed 10 Feb 2023.

  • Vain T, Crowell EF, Timpano H, Biot E, Desprez T, Mansoori N, Trindade LM, Pagant S, Robert S, Hofte H, et al. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol. 2014;165:1521–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiba S, Sasaki A, Nakayama A, Takamura K, Satoh N. Development of Ciona intestinalis juveniles (through 2nd Ascidian Stage). Zoolog Sci. 2004;21:285–98.

    Article 
    PubMed 

    Google Scholar
     

  • Hotta K, Dauga D, Manni L. The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Sci Rep. 2020;10:17916.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng F, Wunderer J, Salvenmoser W, Hess MW, Ladurner P, Rothbächer U. Papillae revisited and the nature of the adhesive secreting collocytes. Dev Biol. 2019;448:183–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Daele Y, Revol J-F, Gaill F, Goffinet G. Characterization and supramolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthia papillosa, Ascidiacea, Urochordata). Biol Cell. 1992;76:87–96.

    Article 

    Google Scholar
     

  • Sasakura Y, Horie T. Improved genome editing in the Ascidian Ciona with CRISPR/Cas9 and TALEN. Methods Mol Biol. 2023;2637:375–88.

    Article 
    PubMed 

    Google Scholar
     

  • Yamagishi M, Huang T, Hozumi A, Onuma TA, Sasakura Y, Ogasawara M. Differentiation of endostyle cells by Nkx2-1 and FoxE in the ascidian Ciona intestinalis type A: insights into shared gene regulation in glandular- and thyroid-equivalent elements of the chordate endostyle. Cell Tissue Res. 2022;390:189–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida K, Treen N. TALEN-based knockout. System. 2018;1029:131–9.

    CAS 

    Google Scholar
     

  • Kourakis MJ, Bostwick M, Zabriskie A, Smith WC. Disruption of left-right axis specification in Ciona induces molecular, cellular, and functional defects in asymmetric brain structures. BMC Biol. 2021;19:141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato Y, Morisawa M. Loss of test cells leads to the formation of new tunic surface cells and abnormal metamorphosis in larvae of Ciona intestinalis (Chordata, Ascidiacea). Dev Genes Evol. 1999;209:592–600.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joly J-S, Kano S, Matsuoka T, Auger H, Hirayama K, Satoh N, Awazu S, Legendre L, Sasakura Y. Culture of Ciona intestinalis in closed systems. Dev Dyn. 2007;236:1832–40.

    Article 
    PubMed 

    Google Scholar
     

  • Lambert CC, Brandt CL. The effect of light on the spawning of Ciona Intestinalis. Biol Bull. 1967;132:222–8.

    Article 
    PubMed 

    Google Scholar
     

  • Zeller RW. Electroporation in Ascidians: History, Theory and Protocols. In: Ascidians T, editor. Sasakura, Y. Singapore: Springer Nature Singapore; 2018.


    Google Scholar
     

  • Satou Y, Kusakabe T, Araki L, Satoh N. Timing of initiation of muscle-specific gene expression in the ascidian embryo precedes that of developmental fate restriction in lineage cells. Dev Growth Differ. 1995;37:319–27.

    Article 
    PubMed 

    Google Scholar
     

  • Hotta K, Mitsuhara K, Takahashi H, Inaba K, Oka K, Gojobori T, Ikeo K. A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev Dyn. 2007;236:1790–805.

    Article 
    PubMed 

    Google Scholar
     

  • TUNICANATO tunicate anatomical and developmental ontology. https://www.bpni.bio.keio.ac.jp/tunicanato/3.0/

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forster B, Van De Ville D, Berent J, Sage D, Unser M. Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microsc Res Tech. 2004;65:33–42.

    Article 
    PubMed 

    Google Scholar
     

  • Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell. 2019;177:1888-1902.e21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rstudio Team 2020. RStudio: Integrated Development for R. . http://www.rstudio.com/

  • Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, et al. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep. 2013;3:3379.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y. Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development. 2014;141:481–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ. TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 2012;40:W117–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • TAL Effector Nucleotide Targeter 2.0 [Online]. Available: https://tale-nt.cac.cornell.edu/. Accessed 14 Oct 2020.



  • Source link