Scientific Papers

Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins | BMC Biochemistry


  • Fassler JS, West AH. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Euk Cell. 2013;12(8):1052–60.

    Article 
    CAS 

    Google Scholar
     

  • Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem. 2000;69:183–215.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito H. Histidine phosphorylation and two-component signaling in eukaryotic cells. Chem Rev. 2001;101:2497–509.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Agostino IB, Kieber JJ. Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem Sci. 1999;24(Nov.):452–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuzuki M, Ishige K, Mizuno T. Phosphotransfer circuitry of the putative multi-signal transducer, ArcB, of Escherichia coli: in vitro studies with mutants. Mol Microbiol. 1995;18:953–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilwes AM, Alex LA, Crane BR, Simon MI. Structure of CheA, a signal-transducing histidine kinase. Cell. 1999;96(Jan. 8):131–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman JA, Bassler BL. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol. 1999;181(3):899–906.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calera JA, Herman D, Calderone R. Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast. 2000;16:1053–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JW, Ko YJ, Kim SY, Bahn YS. Multiple roles of Ypd1 phosphotransfer protein in viability, stress response, and virulence factor regulation in Cryptococcus neoformans. Euk Cell. 2011;10(7):998–1002.

    Article 
    CAS 

    Google Scholar
     

  • Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett. 1998;437:11–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell. 1996;86:865–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamás MJ, Rep M, Thevelein JM, Hohmann S. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 2000;472:159–65.

    Article 
    PubMed 

    Google Scholar
     

  • Bhate MP, Molnar KS, Goulian M, DeGrado WF. Signal transduction in histidine kinases: insights from new structures. Structure. 2015;23(6):981–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diensthuber RP, Bommer M, Gleichmann T, Möglich A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure. 2013;21(July 2):1127–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao R, Stock AM. Biological insights from structures of two-component proteins. Annu Rev Microbiol. 2009;63:133–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996;86:845–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito H, Posas F. Response to hyperosmotic stress. Genetics. 2012;192(Oct.):289–318.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin DE. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2005;69(2):262–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fassler J, West AH. Genetic and biochemical analysis of the SLN1 pathway in Saccharomyces cerevisiae. Meth Enzymol. 2010;471:291–317.

    Article 
    CAS 

    Google Scholar
     

  • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002;66(2):300–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posas F, Saito H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 1998;17(5):1385–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S, Ault A, Malone CL, Raitt D, Dean S, Johnston LH, et al. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J. 1998;17(23):6952–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res. 2011;40(D1):D700–D5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fassler JS, West AH. Fungal Skn7 stress responses and their relationship to virulence. Euk Cell. 2011;10(2):156–67.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Dean S, Li Z, Horecka J, Deschenes RJ, Fassler JS. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell. 2002;13(Feb.):412–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu JM-Y, Deschenes RJ, Fassler JS. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Euk Cell. 2003;2(6):1304–14.

    Article 
    CAS 

    Google Scholar
     

  • Maeda T, Wurgler-Murphy SM, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994;369:242–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaserer AO, Andi B, Cook PF, West AH. Kinetic measurements for studying phosphorelay signaling. Meth Enzymol. 2010;471:291–317.

    Article 
    CAS 

    Google Scholar
     

  • Tamás MJ, Luyten K, Sutherland FCW, Hernandez A, Albertyn J, Valadi H, et al. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol. 1999;31(4):1087–104.

    Article 
    PubMed 

    Google Scholar
     

  • Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, et al. Structure and function of a transcriptional network activated by the MAPK Hog1. Nature Genet. 2008;40(11):1300–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994;14(6):4135–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ota IM, Varshavsky A. A gene encoding a putative tyrosine phosphatase suppresses lethality of an N-end rule-dependent mutant. Proc Natl Acad Sci U S A. 1992;89:2355–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter SW, West AH. A common docking site for response regulators on the yeast phosphorelay protein YPD1. Biochim Biophys Acta. 2005;1748:138–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porter SW, Xu Q, West AH. Ssk1p response regulator binding surface on histidine-containing phosphotransfer protein Ypd1p. Euk Cell. 2003;2(1):27–33.

    Article 
    CAS 

    Google Scholar
     

  • Xu Q, West AH. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. J Mol Biol. 1999;292:1039–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H. Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci. 2006;14:202–8.

    Article 
    CAS 

    Google Scholar
     

  • Kato M, Mizuno T, Shimizu T, Hakoshima T. Refined structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor kinase ArcB from Escherichia coli at 1.57 Å resolution. Acta Cryst. 1999;D55:1842–9.

    CAS 

    Google Scholar
     

  • Ulrich DL, Kojetin D, Bassler BL, Cavanagh J, Loria JP. Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing. J Mol Biol. 2005;347:297–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruszkowski M, Brzezinski K, Jedrzejczak R, Dauter M, Dauter Z, Sikorski M, et al. Medicago truncatula histidine-containing phosphotransfer protein: structural and biochemical insights into the cytokinin transduction pathway in plants. FEBS J. 2013;280:3709–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogov VV, Bernhard F, Lohr F, Dotsch V. Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains. J Mol Biol. 2004;343:1035–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Q, Carlton D, Miller MD, Elsliger M-A, Krishna SS, Abdubek P, et al. The crystal structureof a histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter cresentus. J Mol Biol. 2009;390:686–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer J, Reiss K, Veerabagu M, Heunemann M, Harter K, Stehle T. Structure-function analysis of Arabidopsis thaliana histidine kinase AHK5 bound to its cognate phosphotransfer protein AHP1. Mol Plant. 2012;6(3):959–70.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu Q, Nguyen V, West AH. Purification, crystallization, and preliminary X-ray diffraction analysis of the yeast phosphorelay protein YPD1. Acta Cryst. 1999;D55:291–3.

    CAS 

    Google Scholar
     

  • Zhao X, Copeland DM, Soares AS, West AH. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog. J Mol Biol. 2008;375(4):1141–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janiak-Spens F, West AH. Functional roles of conserved amino acid residues surrounding the phosphorylatable histidine of the yeast phosphorelay protein YPD1. Mol Microbiol. 2000;37(1):136–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janiak-Spens F, Cook PF, West AH. Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry. 2005;44(1):377–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsushika A, Mizuno T. The structure and function of the histidine-containing phosphotransfer (HPt) signaling domain of the Escherichia coli ArcB sensor. J Biochem. 1998;124:440–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura A, Kakimoto T, Imamura A, Suzuki T, Ueguchi C, Mizuno T. Biochemical characterization of a putative cytokinin-responsive his-kinase, CKI1, from Arabidopsis thaliana. Biosci Biotechnol Biochem. 1999;63(9):1627–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):279–85.

    Article 
    CAS 

    Google Scholar
     

  • Stojanovski K, Ferrar T, Benisty H, Uschner F, Delgado J, Jimenez J, et al. Interaction dynamics determine signaling and output pathway responses. Cell Rep. 2017;19(April 4, 2017):136–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Q, Porter SW, West AH. The yeast YPD1/SLN1 complex: insights into molecular recognition in two-component systems. Structure. 2003;11(Dec. 2003):1569–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biondi EG, Skerker JM, Arif M, Prasol MS, Perchuck BS, Laub MT. A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter cresentus. Mol Microbiol. 2006;59(2):386–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahn Y-S, Kojima K, Cox GM, Heitman J. A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell. 2006;17(July):3122–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu J-L, Chen H-C, Peng H-L, Chang H-Y. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J Biol Chem. 2008;283(15):9933–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mavrianos J, Desai C, Chauhan N. Two-component histidine phosphotransfer protein Ypd1 is not essential for viability in Candida albicans. Euk Cell. 2014;13(4):452–60.

    Article 
    CAS 

    Google Scholar
     

  • Schuster M, Silversmith RE, Bourret RB. Conformational coupling in the chemotaxis response regulator CheY. Proc Natl Acad Sci U S A. 2001;98(11):6003–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herschlag D, Jencks WP. The effects of Mg2+, hydrogen bonding, and steric factors on rate and equilibrium constants for phosphoryl transfer between carboxylate ions and pyridines. J Am Chem Soc. 1990;112(5):1942–50.

    Article 
    CAS 

    Google Scholar
     

  • Stock J, Levit MN, Wolanin PM. Information processing in bacterial chemotaxis. Science’s STKE. 2002;https://stke.sciencemag.org/content/2002/132/pe25.

  • Grebe TW, Stock JB. The histidine protein kinase superfamily. Adv Micro Physiol. 1999;41:139–227.

    Article 
    CAS 

    Google Scholar
     

  • Kim D-J, Forst S. Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology. 2001;147:1197–212.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta R, Yoshida T, Inouye M. The critical role of the conserved Thr247 residue in the functioning of the osmosensor EnvZ, a histidine kinase/phosphatase, in Escherichia coli. J Biol Chem. 2000;275(49):38645–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janiak-Spens F, Sparling JM, Gurfinkel M, West AH. Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. J Bacteriol. 1999;181(2):411–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997;276:307–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Cryst. 2010;D66:213–21.


    Google Scholar
     

  • McCoy AJ, Grosse-Kunstieve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung L-W, et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr. 2008;64(1):61–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix. Refine. Acta Crystallogr D Biol Crystallogr. 2012;68(4):352–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. 2004;D 60:2126–32.


    Google Scholar
     

  • Rasband W, Image J. US national institutes of health. Maryland: Bethesda; 1997.


    Google Scholar
     

  • Wolfram S. Wolfram research. Inc, Mathematica, Version. 2013;8:23.

  • Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–35.

    Article 
    CAS 

    Google Scholar
     

  • Release S. 2: Maestro, version 9.8. Schrödinger, LLC, New York, NY. 2014.

  • Banks JL, Beard HS, Cao Y, Cho AE, Damm W, Farid R, et al. Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem. 2005;26(16):1752–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, et al., editors. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC 2006 Conference, Proceedings of the ACM/IEEE; 2006: IEEE.

  • DeLano WL. The PyMOL molecular graphics system. San Carlos: DeLano Scientific; 2002.


    Google Scholar
     

  • Karplus PA, Diederichs K. Linking crystallographic model and data quality. Science. 2012;336(6084):1030–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link