Scientific Papers

De novo assembly and annotation of the singing mouse genome | BMC Genomics


  • Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. J Anim Sci Technol. 2018;60(1):25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat Rev Genet. 2014;15(11):734–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patthy L. Genome evolution and the evolution of exon-shuffling — a review. Gene. 1999;238(1):103–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulitsky I. Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet. 2016;17(10):601–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulitsky I, Bartel DP. lincRNAs: Genomics, Evolution, and Mechanisms. Cell. 2013;154(1):26–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Yang J-R. Determinants of the rate of protein sequence evolution. Nat Rev Genet. 2015;16(7):409–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007;447(7143):413–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation. J Mol Biol. 2013;425(21):3970–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Hu M, Shen Y. Gene regulation in the 3D genome. Hum Mol Genet. 2018;27(R2):R228–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennacchio LA, Rubin EM. Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet. 2001;2(2):100–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nat Genet. 2006;38(11):1348–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smallwood A, Ren B. Genome organization and long-range regulation of gene expression by enhancers. Curr Opin Cell Biol. 2013;25(3):387–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Würtele H, Chartrand P. Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res. 2006;14(5):477–95.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006;38(11):1341–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belokopytova P, Fishman V. Predicting genome architecture: challenges and solutions. Front Genet. 2021;22(11):617202.

    Article 

    Google Scholar
     

  • Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8(2):93–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hobert O. Gene regulation by transcription factors and microRNAs. Science. 2008;319(5871):1785–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim TH, Ren B. Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet. 2006;7(1):81–102.

    Article 
    PubMed 

    Google Scholar
     

  • Baack EJ, Rieseberg LH. A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev. 2007;17(6):513–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet. 2020;21(9):526–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farré M, Ruiz-Herrera A. The plasticity of genome architecture. Genes. 2020;11(12):1413.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matz MV. Fantastic beasts and how to sequence them: ecological genomics for obscure model organisms. Trends Genet. 2018;34(2):121–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hooper ET, Carleton MD. Hooper & Carleton 1976. Available from: https://deepblue.lib.umich.edu/bitstream/handle/2027.42/56395/MP151.pdf?sequence=1. [Cited 2017 Aug 16].

  • Fernández-Vargas M, Tang-Martínez Z, Phelps SM. Singing, allogrooming, and allomarking behaviour during inter- and intra-sexual encounters in the Neotropical short-tailed singing mouse (Scotinomys teguina). Behaviour. 2011;148(8):945–65.

    Article 

    Google Scholar
     

  • Miller JR, Engstrom MD. Vocal Stereotypy and Singing Behavior in Baiomyine Mice. J Mammal. 2007;88(6):1447–65.

    Article 

    Google Scholar
     

  • Pasch B, George AS, Hamlin HJ, Guillette LJ, Phelps SM. Androgens modulate song effort and aggression in Neotropical singing mice. Horm Behav. 2011;59(1):90–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasch B, George AS, Campbell P, Phelps SM. Androgen-dependent male vocal performance influences female preference in Neotropical singing mice. Anim Behav. 2011;82(2):177–83.

    Article 

    Google Scholar
     

  • Campbell P, Pasch B, Pino JL, Crino OL, Phillips M, Phelps SM. Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation. Evolution. 2010;64(7):1955–72.

    PubMed 

    Google Scholar
     

  • Okobi DE, Banerjee A, Matheson AMM, Phelps SM, Long MA. Motor cortical control of vocal interaction in neotropical singing mice. Science. 2019;363(6430):983–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burkhard TT, Westwick RR, Phelps SM. Adiposity signals predict vocal effort in Alston’s singing mice. Proc R Soc B Biol Sci. 1877;2018(285):20180090.


    Google Scholar
     

  • Giglio EM, Phelps SM. Leptin regulates song effort in Neotropical singing mice (Scotinomys teguina). Anim Behav. 2020;1(167):209–19.

    Article 

    Google Scholar
     

  • Smith SK, Burkhard TT, Phelps SM. A comparative characterization of laryngeal anatomy in the singing mouse. J Anat. Available from: http://onlinelibrary.wiley.com/doi/abs/10.1111/joa.13315. [Cited 2021 Jan 6].

  • Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0.2013–2015. http://www.repeatmasker.org.

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. 2013;8(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875132/. [Cited 2021 Jan 20].

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinforma Oxf Engl. 2013;29(1):15–21.

    Article 
    CAS 

    Google Scholar
     

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.

    Article 
    PubMed 

    Google Scholar
     

  • Picard Tools – By Broad Institute. Available from: http://broadinstitute.github.io/picard/. [Cited 2021 Aug 30].

  • Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.

  • Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46(D1):D794-801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article 

    Google Scholar
     

  • R: The R Project for Statistical Computing. Available from: https://www.r-project.org/. [Cited 2021 Aug 30].

  • Wright RM, Kenkel CD, Dunn CE, Shilling EN, Bay LK, Matz MV. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci Rep. 2017;7(1):2609.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. Available from: http://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa970/5943834. [Cited 2020 Dec 6].

  • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matz MV. Rank-based gene ontology analysis with adaptive clustering. 2021. Available from: https://github.com/z0on/GO_MWU. [Cited 2021 Aug 19].

  • Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14(2):482–517.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One. 2010;5(11):e13984.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The UniVec Database. Available from: https://www-ncbi-nlm-nih-gov.ezproxy.lib.utexas.edu/tools/vecscreen/univec/. [Cited 2021 Aug 30].

  • Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics. 2011;27(17):2325–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12(3):R22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20(1):1–3.

    Article 

    Google Scholar
     

  • Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20(16):2878–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lukashin AV, Borodovsky M. GeneMark. hmm: new solutions for gene finding. Nucleic Acids Res. 1998;26(4):1107–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24(5):637–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H. Protein-to-genome alignment with miniprot. Bioinformatics. 2023;39(1):btad014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics. 2007;23(10):1282–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:1–22.

    Article 

    Google Scholar
     

  • Haas BJ, Zeng Q, Pearson MD, Cuomo CA, Wortman JR. Approaches to fungal genome annotation. Mycology. 2011;2(3):118–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • UniProt. Available from: https://www.uniprot.org/. [Cited 2021 Aug 30].

  • Bortolin L. Extraction of nuclei from brain tissue. 2020. Available from: https://www.protocols.io/view/extraction-of-nuclei-from-brain-tissue-2srged6. [Cited 2021 Aug 30].

  • Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):14049.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902.e21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(11):2579–605.

  • Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37(1):38–44.

    Article 
    CAS 

    Google Scholar
     

  • McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv180203426 Cs Stat. 2020. Available from: http://arxiv.org/abs/1802.03426. [Cited 2021 Jul 16].

  • Almanzar N, Antony J, Baghel AS, Bakerman I, Bansal I, Barres BA, et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature. 2020;583(7817):590–5.

    Article 
    CAS 

    Google Scholar
     

  • Yao Z, van Velthoven CTJ, Nguyen TN, Goldy J, Sedeno-Cortes AE, Baftizadeh F, et al. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell. 2021;184(12):3222-3241.e26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev. 2006;16(6):545–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merker JD, Wenger AM, Sneddon T, Grove M, Zappala Z, Fresard L, et al. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet Med. 2018;20(1):159–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol. 2013;14(6):405.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17(1):239.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19(1):90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Y, Bayer PE, Batley J, Edwards D. Improvements in Genomic Technologies: Application to Crop Genomics. Trends Biotechnol. 2017;35(6):547–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, Fulton RS, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420(6915):520–62.

    Article 
    PubMed 

    Google Scholar
     

  • Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Corbett-Detig R, et al. The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections. Sci Adv. 2019;5(7):eaaw6441.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng DJ, Okobi DE, Shu R, Agrawal R, Smith SK, Long MA, et al. Mapping the vocal circuitry of Alston’s singing mouse with pseudorabies virus. bioRxiv. 2021 Jul 17;2021.07.16.452718.

  • Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463(7279):311–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamazian G, Simonov S, Dobrynin P, Makunin A, Logachev A, Komissarov A, et al. Annotated features of domestic cat – Felis catus genome. GigaScience. 2014;3(1). Available from: https://doi.org/10.1186/2047-217X-3-13. [Cited 2021 Sep 1].

  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, et al. Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994;79(4):717–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maximov A, Südhof TC. Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release. Neuron. 2005;48(4):547–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshihara M, Littleton JT. Synaptotagmin I Functions as a Calcium Sensor to Synchronize Neurotransmitter Release. Neuron. 2002;36(5):897–908.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron. 1991;7(1):91–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science. 2007;316(5830):1497–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Booker TR, Jackson BC, Keightley PD. Detecting positive selection in the genome. BMC Biol. 2017;15(1):98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu W, Akey JM. Selection and adaptation in the human genome. Annu Rev Genomics Hum Genet. 2013;14(1):467–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavlidis P, Alachiotis N. A survey of methods and tools to detect recent and strong positive selection. J Biol Res-Thessalon. 2017;24(1):7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link