Scientific Papers

Hemolysis, icterus and lipemia interfere with the determination of two oxidative stress biomarkers in canine serum | BMC Veterinary Research


  • Sies H. Oxidative stress: concept and some practical aspects. Antioxidants (Basel). 2020;9(9):852.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sies H, Berndt C, Jones DP. Oxidative Stress. Annu Rev Biochem. 2017;86(1):715–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemec Svete A, Verk B, Čebulj-Kadunc N, Salobir J, Rezar V, Domanjko PA. Inflammation and its association with oxidative stress in dogs with heart failure. BMC Vet Res. 2021;17:176.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubio CP, Saril A, Kocaturk M, Tanaka R, Koch J, Ceron JJ, et al. Changes of inflammatory and oxidative stress biomarkers in dogs with different stages of heart failure. BMC Vet Res. 2020;16(1):433.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erjavec V, Vovk T, Svete AN. Evaluation of oxidative stress parameters in dogs with brachycephalic obstructive airway syndrome before and after surgery. J Vet Res. 2021;65(2):201–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woolcock AD, Serpa PBS, Santos AP, Christian JA, Moore GE. Reactive oxygen species, glutathione, and vitamin E concentrations in dogs with hemolytic or nonhemolytic anemia. J Vet Intern Med. 2020;34(6):2357–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kendall A, Woolcock A, Brooks A, Moore GE. Glutathione peroxidase activity, plasma total antioxidant capacity, and urinary F2- Isoprostanes as markers of oxidative stress in anemic dogs. J Vet Intern Med. 2017;31(6):1700–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesillo SA, Freeman LM, Rush JE. Assessment of lipid peroxidation and serum vitamin E concentration in dogs with immune-mediated hemolytic anemia. Am J Vet Res. 2004;65(12):1621–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Candellone A, Girolami F, Badino P, Jarriyawattanachaikul W, Odore R. Changes in the oxidative stress status of dogs affected by acute enteropathies. Vet Sci. 2022;9(6):276.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubio CP, Martínez-Subiela S, Hernández-Ruiz J, Tvarijonaviciute A, Cerón JJ, Allenspach K. Serum biomarkers of oxidative stress in dogs with idiopathic inflammatory bowel disease. Vet J. 2017;221:56–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kogika MM, Lustoza MD, Hagiwara MK, Caragelasco DS, Martorelli CR, Mori CS. Evaluation of oxidative stress in the anemia of dogs with chronic kidney disease. Vet Clin Pathol. 2015;44(1):70–8.

    Article 
    PubMed 

    Google Scholar
     

  • Quintavalla F, Basini G, Bussolati S, Carrozzo GG, Inglese A, Ramoni R. Redox status in canine leishmaniasis. Animals (Basel). 2021;11(1):119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida BFM, Narciso LG, Melo LM, Preve PP, Bosco AM, Lima VMF, et al. Leishmaniasis causes oxidative stress and alteration of oxidative metabolism and viability of neutrophils in dogs. Vet J. 2013;198(3):599–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crnogaj M, Cerón JJ, Šmit I, Kiš I, Gotić J, Brkljačić M, et al. Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis. BMC Vet Res. 2017;13(1):114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macotpet A, Suksawat F, Sukon P, Pimpakdee K, Pattarapanwichien E, Tangrassameeprasert R, et al. Oxidative stress in cancer-bearing dogs assessed by measuring serum malondialdehyde. BMC Vet Res. 2013;9:101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karayannopoulou M, Fytianou A, Assaloumidis N, Psalla D, Constantinidis TC, Kaldrymidou E, et al. Markers of lipid peroxidation and α-tocopherol levels in the blood and neoplastic tissue of dogs with malignant mammary gland tumors. Vet Clin Pathol. 2013;42(3):323–8.

    Article 
    PubMed 

    Google Scholar
     

  • Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015;23(14):1144–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem. 2017;524:13–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee R, Margaritis M, Channon KM, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem. 2012;19(16):2504–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales M, Munné-Bosch S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019;180(3):1246–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguilar Diaz De Leon J, Borges CR. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J Vis Exp. 2020;(159):10.3791–61122.

  • Devasagayam TPA, Boloor KK, Ramasarma T. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys. 2003;40(5):300–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomsič K, Seliškar A, Lukanc B, Nemec SA. Plasma total antioxidant capacity and activities of blood glutathione peroxidase and superoxide dismutase determined in healthy dogs by using commercially available kits. Acta Vet. 2016;66(4):534–48.

    Article 

    Google Scholar
     

  • Rubio CP, Hernández-Ruiz J, Martinez-Subiela S, Tvarijonaviciute A, Arnao MB, Ceron JJ. Validation of three automated assays for total antioxidant capacity determination in canine serum samples. J Vet Diagn Invest. 2016;28(6):693–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants (Basel). 2019;8(3):72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munteanu IG, Apetrei C. Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci. 2021;22(7):3380.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubio CP, Hernández-Ruiz J, Martinez-Subiela S, Tvarijonaviciute A, Ceron JJ. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Vet Res. 2016;12:166.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrell CJL, Carter AC. Serum indices: managing assay interference. Ann Clin Biochem. 2016;53(Pt 5):527–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji JZ, Meng QH. Evaluation of the interference of hemoglobin, bilirubin, and lipids on Roche Cobas 6000 assays. Clin Chim Acta. 2011;412(17–18):1550–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimeski G. Interference Testing. Clin Biochem Rev. 2008;29(Suppl 1):S43–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lippi G. Governance of preanalytical variability: travelling the right path to the bright side of the moon? Clin Chim Acta. 2009;404(1):32–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dreissigacker U, Suchy MT, Maassen N, Tsikas D. Human plasma concentrations of malondialdehyde (MDA) and the F2-isoprostane 15(S)-8-iso-PGF(2alpha) may be markedly compromised by hemolysis: evidence by GC-MS/MS and potential analytical and biological ramifications. Clin Biochem. 2010;43(1–2):159–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marques-Garcia F, Jung DHH, Pérez SE. Impact of individualized hemolysis management based on biological variation cut-offs in a clinical laboratory. Ann Lab Med. 2022;42(2):169–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mainali S, Davis SR, Krasowski MD. Frequency and causes of lipemia interference of clinical chemistry laboratory tests. Pract Lab Med. 2017;8:1–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonatto NCM, de Oliveira PL, Mancebo AM, Costa LR, Bosculo MRM, Bosco AM, et al. Postprandial lipemia causes oxidative stress in dogs. Res Vet Sci. 2021;136:277–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glick MR, Ryder KW, Jackson SA. Graphical comparisons of interferences in clinical chemistry instrumentation. Clin Chem. 1986;32(3):470–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryder KW, Glick MR. Erroneous laboratory results from hemolyzed, icteric, and lipemic specimens. Clin Chem. 1993;39(1):175–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clinical and Laboratory Standards Institute. Interference Testing in Clinical Chemistry. 3rd ed CLSI guideline EP07. 2018.

  • Vermeer HJ, Thomassen E, de Jonge N. Automated processing of serum indices used for interference detection by the laboratory information system. Clin Chem. 2005;51(1):244–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knezevic CE, Ness MA, Tsang PHT, Tenney BJ, Marzinke MA. Establishing hemolysis and lipemia acceptance thresholds for clinical chemistry tests. Clin Chim Acta. 2020;510:459–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi G, Giordano A, Pezzia F, Kjelgaard-Hansen M, Paltrinieri S. Serum paraoxonase 1 activity in dogs: preanalytical and analytical factors and correlation with C-reactive protein and alpha-2-globulin. Vet Clin Pathol. 2013;42(3):329–41.

    Article 
    PubMed 

    Google Scholar
     

  • López Martínez R, Alonso Nieva N, Serrat Orús N, Gella Tomás FJ, Boned Juliani B, Canalias Reverter F, et al. Procedimiento para el estudio de la interferencia por hemólisis, bilirrubina y turbidez y para la verificación de los índices de hemólisis, ictericia y lipemia. Documento Técnico SEQC (2013), Comité Científico Comisión de Metrología y Sistemas Analíticos. Documentos de la SEQC. 2014;(7):21–6.

  • Kosugi H, Kato T, Kikugawa K. Formation of yellow, orange, and red pigments in the reaction of alk-2-enals with 2-thiobarbituric acid. Anal Biochem. 1987;165(2):456–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson RM, Ho YS, Yu DY, Kuypers FA, Ravindranath Y, Goyette GW. The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism. Free Radic Biol Med. 2010;48(4):519–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitturi DA, Sun CW, Harper VM, Thrash-Williams B, Cantu-Medellin N, Chacko BK, et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic Biol Med. 2013;55:119–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melo D, Coimbra S, Rocha S, Santos-Silva A. Inhibition of erythrocyte’s catalase, glutathione peroxidase or peroxiredoxin 2 – Impact on cytosol and membrane. Arch Biochem Biophys. 2023;739: 109569.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nocentini A, Bonardi A, Pratesi S, Gratteri P, Dani C, Supuran CT. Pharmaceutical strategies for preventing toxicity and promoting antioxidant and anti-inflammatory actions of bilirubin. J Enzyme Inhib Med Chem. 2022;37(1):487–501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci U S A. 2009;106(13):5171–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroll MH. Evaluating interference caused by lipemia. Clin Chem. 2004;50(11):1968–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold JE, Camus MS, Freeman KP, Giori L, Hooijberg EH, Jeffery U, et al. ASVCP guidelines: principles of quality assurance and standards for veterinary clinical pathology (version 3.0). Vet Clin Pathol. 2019;48(4):542–618.

    Article 
    PubMed 

    Google Scholar
     

  • Silva ACRA, de Almeida BFM, Soeiro CS, Ferreira WL, de Lima VMF, Ciarlini PC. Oxidative stress, superoxide production, and apoptosis of neutrophils in dogs with chronic kidney disease. Can J Vet Res. 2013;77(2):136–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varney JL, Fowler JW, Gilbert WC, Coon CN. Utilisation of supplemented l-carnitine for fuel efficiency, as an antioxidant, and for muscle recovery in Labrador retrievers. J Nutr Sci. 2017;3(6): e8.

    Article 

    Google Scholar
     



  • Source link