Scientific Papers

Sequence variation of necdin gene in Bovidae | Journal of Animal Science and Technology


  • International Union for Conservation of Nature and Natural Resources. IUCN. The IUCN red list of threatened species. Version 2014.3. 2014. Available at: http://www.iucnredlist.org.


    Google Scholar
     

  • Wang Q, Yang C. The phylogeny of the Cetartiodactyla based on complete mitochondrial genomes. Intern J Biol. 2013;5:30–6.

    Article 

    Google Scholar
     

  • Montgelard C, Catzeflis FM, Douzery E. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol Biol Evol. 1997;14:550–9.

    Article 
    CAS 

    Google Scholar
     

  • Hassanin A, Douzery EJ. Molecular and morphological phylogenies of ruminantia and the alternative position of the Moschidae. Syst Biol. 2003;52:206–28.

    Article 

    Google Scholar
     

  • McGowen MR, Spaulding M, Gatesy J. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol. 2009;53:891–906.

    Article 
    CAS 

    Google Scholar
     

  • Zhou X, Xu S, Yang Y, Zhou K, Yang G. Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol Phylogenet Evol. 2011;61:255–64.

    Article 

    Google Scholar
     

  • Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A. Pattern and timing of diversification of Cetartiodactyla. Mammalia Laurasiatheria. As revealed by a comprehensive analysis of mitochondrial genomes. C R Biol. 2012;335:32–50.

    Article 

    Google Scholar
     

  • Maruyama K, Usami M, Aizawa T, Yoshikawa K. A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun. 1991;178:291–6.

    Article 
    CAS 

    Google Scholar
     

  • Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, Roëckel N, Taviaux S, Lefranc JL, Cau P, Berta P, Lalande M, Muscatelli F. The human necdin gene NDN is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997;17:357–61.

    Article 
    CAS 

    Google Scholar
     

  • Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-willi syndrome. Genet Med. 2012;14(1):10–26.

    Article 
    CAS 

    Google Scholar
     

  • Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, Cremer H. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet. 2000;9:3101–10.

    Article 
    CAS 

    Google Scholar
     

  • Chapman EJ, Knowles MA. Necdin: a multifunctional protein with potential tumor suppressor role? Mol Carcinog. 2009;48:975–81.

    Article 
    CAS 

    Google Scholar
     

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101:6062–7.

    Article 
    CAS 

    Google Scholar
     

  • Miller NL, Wevrick R, Mellon PL. Necdin a Prader-Willi syndrome candidate gene regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet. 2009;18:248–60.

    Article 
    CAS 

    Google Scholar
     

  • Yang H, Das P, Yu Y, Mao W, Wang Y, Baggerly K, Wang Y, Marquez RT, Bedi A, Liu J, Fishman D, Lu Z, Bast RC Jr. NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms. Oncotarget. 2016;7:3018–32.

    PubMed 

    Google Scholar
     

  • Kobayashi M, Taniura H, Yoshikawa K. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J Biol Chem. 2002;277(44):42128–35.

    Article 
    CAS 

    Google Scholar
     

  • Tseng YH, Butte AJ, Kokkotou E, Yechoor VK, Taniguchi CM, Kriauciunas KM, Cypess AM, Niinobe M, Yoshikawa K, Patti ME, Kahn CR. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol. 2005;7(6):601.

    Article 
    CAS 

    Google Scholar
     

  • Chess A. Mechanisms and consequences of widespread random monoallelic expression. Nat Rev Genet. 2012;13(6):421–8.

    Article 
    CAS 

    Google Scholar
     

  • Savova V, Chun S, Sohail M, McCole RB, Witwicki R, Gai L, Lenz TL. Genes with monoallelic expression contribute disproportionately to genetic diversity in humans. Nat Genet. 2016;48(3):231–7.

    Article 
    CAS 

    Google Scholar
     

  • Pausch H, Flisikowski K, Jung S, Emmerling R, Edel C, Götz KU, Fries R. Genome-wide association study identifies two major loci affecting calving ease and growth related traits in cattle. Genetics. 2011;187(1):289–97.

    Article 
    CAS 

    Google Scholar
     

  • Frischknecht M, Bapst B, Seefried FR, Signer-Hasler H, Garrick D, Stricker C, Fries R, Russ I, Sölkner J, Bieber A, Strillacci MG. Genome-wide association studies of fertility and calving traits in Brown Swiss cattle using imputed whole-genome sequences. BMC Genomics. 2017;18(1):910.

    Article 

    Google Scholar
     

  • Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics. 2014 Dec;15(1):442.

    Article 

    Google Scholar
     

  • Barnwell CV, Farin PW, Ashwell CM, Farmer WT, Galphin SP Jr, Farin CE. Differences in mRNA populations of short and long bovine conceptuses on day 15 of gestation. Mol Reprod Dev. 2016;83(5):424–41.

    Article 
    CAS 

    Google Scholar
     

  • Utsunomiya YT, Carmo AS, Neves HH, Carvalheiro R, Matos MC, Zavarez LB, Ito PK, O’Brien AM, Sölkner J, Porto-Neto LR, Schenkel FS. Genome-wide mapping of loci explaining variance in scrotal circumference in Nellore cattle. PLoS One. 2014;9(2):e88561.

    Article 

    Google Scholar
     

  • Dubchak I, Ryaboy DV. VISTA family of computational tools for comparative analysis of DNA sequences and whole genomes. Methods Mol Biol. 2006;338:69–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3Plus an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35:W71–4.

    Article 

    Google Scholar
     

  • Korber B. In: Rodrigo AG, Learn GH, editors. HIV Signature and Sequence Variation Analysis. Computational Analysis of HIV Molecular Sequences. Dordrecht, Netherlands: Kluwer Academic Publishers; 2000. p. 55–72.


    Google Scholar
     

  • Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31(16):2745–7.

    Article 
    CAS 

    Google Scholar
     

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. New York: Humana Press; 2005. p. 571–607.

  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Article 
    CAS 

    Google Scholar
     

  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article 

    Google Scholar
     

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.

    Article 

    Google Scholar
     

  • Taberlet P, Coissac E, Pansu J, Pompanon F. Conservation genetics of cattle sheep and goats. C R Biol. 2011;334:247–54.

    Article 

    Google Scholar
     

  • De Donato M, Peters SO, Hussain T, Rodulfo H, Thomas BN, Babar ME, Imumorin IG. Molecular evolution of type II MAGE genes from ancestral MAGED2 gene and their phylogenetic resolution of basal mammalian clades. Mamm Genome. 2017;28(9–10):443–54.

    Article 

    Google Scholar
     

  • Feder ME, Mitchell-Olds T. Evolutionary and ecological functional genomics. Nat Rev Genet. 2003;4(8):649–55.

    Article 

    Google Scholar
     

  • Magee DA, Spillane C, Berkowicz EW, Sikora KM, MacHugh DE. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim Genet. 2014;45:25–39.

    Article 
    CAS 

    Google Scholar
     



  • Source link