Scientific Papers

A toxic gain-of-function mechanism in C9orf72 ALS impairs the autophagy-lysosome pathway in neurons | Acta Neuropathologica Communications

Description of Image

  • Swinnen B, Robberecht W (2014) The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10:661–670

    Article 
    PubMed 

    Google Scholar
     

  • Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (80–) 314:130–133

    Article 
    CAS 

    Google Scholar
     

  • Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talbot K (2011) Familial versus sporadic ALS: a false dichotomy? Brain 134:3429–3431

    Article 
    PubMed 

    Google Scholar
     

  • Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrell JR, Halliday GM, Kril JJ, Ittner LM, Götz J, Kiernan MC, Hodges JR (2016) The frontotemporal dementia-motor neuron disease continuum. Lancet 388:919–931

    Article 
    PubMed 

    Google Scholar
     

  • Abramzon YA, Fratta P, Traynor BJ, Chia R (2020) The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front Neurosci 14:1–10

    Article 

    Google Scholar
     

  • Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079

    Article 
    PubMed 

    Google Scholar
     

  • Breevoort S, Gibson S, Figueroa K, Bromberg M, Pulst S (2022) Expanding clinical spectrum of C9ORF72-related disorders and promising therapeutic strategies. Neurol Genet 8:e670

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haeusler AR, Donnelly CJ, Rothstein JD (2016) The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci 17:383–395

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST, Hendricks E, Linares GR, Wang Y, Son EY et al (2018) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 24:313–325

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braems E, Swinnen B, Van Den Bosch L (2020) C9orf72 loss‑of‑function: a trivial, stand‑alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol

  • Haeusler AR, Donnelly CJ, Periz G, Simko EAJ, Shaw PG, Kim MS, Maragakis NJ, Troncoso JC, Pandey A, Sattler R et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swinnen B, Robberecht W, Van Den Bosch L (2019) RNA toxicity in non-coding repeat expansion disorders. EMBO J, 1–23

  • Westergard T, McAvoy K, Russell K, Wen X, Pang Y, Morris B, Pasinelli P, Trotti D, Haeusler A (2019) Repeat-associated non-AUG translation in C9orf72- ALS/FTD is driven by neuronal excitation and stress. EMBO Mol Med 11:1–14

    Article 

    Google Scholar
     

  • Mori K, Weng S-M, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freibaum BD, Taylor JP (2017) The role of dipeptide repeats in C9ORF72-related ALS-FTD. Front Mol Neurosci 10:1–9

    Article 
    CAS 

    Google Scholar
     

  • Beckers J, Tharkeshwar AK, Van Damme P (2021) C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels pathway at multiple levels. Autophagy 00:1–17

    CAS 

    Google Scholar
     

  • Dane TL, Gill AL, Vieira FG, Denton KR (2023) Reduced C9orf72 expression exacerbates polyGR toxicity in patient iPSC-derived motor neurons and a Type I protein arginine methyltransferase inhibitor reduces that toxicity. Front Cell Neurosci, 1–14

  • Shao Q, Liang C, Chang Q, Zhang W, Yang M, Chen J (2019) C9orf72 deficiency promotes motor deficits of a C9ALS/FTD mouse model in a dose- dependent manner. Acta Neuropathol Commun 7:9–11

    Article 

    Google Scholar
     

  • Zhu Q, Jiang J, Gendron TF, Mcalonis-downes M, Jiang L, Taylor A, Garcia SD, Dastidar SG, Rodriguez MJ, King P, et al (2020) Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci

  • Deng Z, Lim J, Wang Q, Purtell K, Wu S, Palomo GM, Tan H, Manfredi G, Zhao Y, Peng J et al (2020) ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy 16:917–931

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Webster CP, Smith EF, Grierson AJ, De Vos KJ (2018) C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases 9:1–10

    Article 
    CAS 

    Google Scholar
     

  • Renton AE, Chiò A, Traynor BJ (2014) State of play in ALS genetics. Nat Neurosci 17:17–23

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallings RL, Humble SW, Ward ME, Wade-Martins R (2019) Lysosomal dysfunction at the Centre of Parkinson’s disease and frontotemporal dementia/amyotrophic lateral sclerosis. Trends Neurosci 42:899–912

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bain HDC, Davidson YS, Robinson AC, Ryan S, Rollinson S, Richardson A, Jones M, Snowden JS, Mann DMA (2019) The role of lysosomes and autophagosomes in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 244–261

  • Sullivan PM, Zhou X, Hu F (2017) Autophagy-lysosome dysfunction in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Lysosomes – Assoc Dis Methods to Study Their Funct

  • Root J, Merino P, Nuckols A, Johnson M, Kukar T (2021) Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 154:105360

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM, Dewachter I (2023) Hallmarks of neurodegenerative diseases. Cell 186:693–714

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruegsegger C, Saxena S (2016) Proteostasis impairment in ALS. Brain Res 1648:571–579

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fazal R, Boeynaems S, Swijsen A, De Decker M, Fumagalli L, Moisse M, Vanneste J, Guo W, Boon R, Vercruysse T, et al (2021) HDAC 6 inhibition restores TDP-43 pathology and axonal transport defects in human motor neurons with TARDBP mutations. EMBO J, pp 1–24

  • Fumagalli L, Young FL, Boeynaems S, De Decker M, Mehta AR, Swijsen A, Fazal R, Guo W, Moisse M, Beckers J, et al (2021) C9orf72-derived arginine-containing dipeptide repeats associate with axonal transport machinery and impede microtubule-based motility. Sci Adv, 19–23

  • Guo W, Naujock M, Fumagalli L, Vandoorne T, Baatsen P, Boon R, Ordovás L, Patel A, Welters M, Vanwelden T et al (2017) HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8:861

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal A, Kretner B, Abo-Rady M, Glab H, Dash BP, Naumann M, Japtok J, Kreiter N, Dhingra A, Heutink P et al (2021) Concomitant gain and loss of function pathomechanisms in C9ORF72 amyotrophic lateral sclerosis. Life Sci Alliance 4:1–26

    Article 

    Google Scholar
     

  • Abo-Rady M, Kalmbach N, Pal A, Schludi C, Janosch A, Richter T, Freitag P, Bickle M, Kahlert AK, Petri S et al (2020) Knocking out C9ORF72 exacerbates axonal trafficking defects associated with hexanucleotide repeat expansion and reduces levels of heat shock proteins. Stem Cell Rep 14:390–405

    Article 
    CAS 

    Google Scholar
     

  • Guo W, Stoklund Dittlau K, Van Den Bosch L (2019) Axonal transport defects and neurodegeneration: molecular mechanisms and therapeutic implications. Semin Cell Dev Biol, 0–1

  • Farfel-Becker T, Roney JC, Cheng XT, Li S, Cuddy SR, Sheng ZH (2019) Neuronal soma-derived degradative lysosomes are continuously delivered to distal axons to maintain local degradation capacity. Cell Rep 28:51-64.e4

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selvaraj BT, Livesey MR, Zhao C, Gregory JM, James OT, Cleary EM, Chouhan AK, Gane AB, Perkins EM, Dando O, et al (2018) C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. Nat Commun, 9

  • Maury Y, Côme J, Piskorowski RA, Salah-Mohellibi N, Chevaleyre V, Peschanski M, Martinat C, Nedelec S (2015) Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol 33:89–96

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandoorne T, Veys K, Guo W, Sicart A, Vints K, Swijsen A, Moisse M, Eelen G, Gounko NV, Fumagalli L, et al (2019) Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nat Commun

  • Cason SE, Mogre SS, Koslover EF, Holzbaur ELF, Cason SE, Mogre SS, Koslover EF, Erika LF (2023) Neuronal autophagy by the numbers neuronal autophagy by the numbers. Autophagy Rep 2

  • Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De CP, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci 112:E3699–E3708

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao J, Wells MF, Niu G, Juan IGS, Limone F, Fukuda A, Leyton-Jaimes MF, Joseph B, Qian M, Mordes DA, et al (2021) Loss of TBK1 activity leads to TDP-43 proteinopathy through lysosomal dysfunction in human motor neurons. bioRxiv; 2021.10.11.464011

  • Marwaha R, Sharma M (2017) DQ-Red BSA trafficking assay in cultured cells to assess Cargo delivery to lysosomes. Bio-Protocol 7

  • Humphries WH, Payne CK (2012) Imaging lysosomal enzyme activity in live cells using self-quenched substrates. Anal Biochem 424:178–183

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fader CM, Colombo MI (2009) Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ 16:70–78

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuck S, Gallagher CM, Walter P (2014) ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 127:4078–4088

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S, Tapper AR, Sellier C, Charlet-Berguerand N, Karydas A et al (2013) Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol 126:385–399

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dafinca R, Scaber J, Ababneh N, Lalic T, Weir G, Christian H, Vowles J, Douglas AGL, Fletcher-Jones A, Browne C et al (2016) C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal demen. Stem Cells 34:2063–2078

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnelly CJ, Zhang P-W, Pham JT, Haeusler AR, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–428

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-gonzalez R, Lu Y, Gendron TF, Miller BL, Almeida S, Gao F, Lopez-gonzalez R, Lu Y, Gendron TF, Karydas A et al (2016) Mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons poly ( GR ) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92:383–391

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters OM, Cabrera GT, Tran H, Gendron TF, McKeon JE, Metterville J, Weiss A, Wightman N, Salameh J, Kim J et al (2015) Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88:902–909

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawrot J, Imhof S, Wainger BJ (2020) Modeling cell-autonomous motor neuron phenotypes in ALS using iPSCs. Neurobiol Dis 134:104680

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y, Forman MS, Troost D, Kretzschmar HA, Trojanowski JQ et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M, Phatnani HP, Puddifoot CA, Story D, Fletcher J et al (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci 109:5803–5808

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berning BA, Walker AK (2019) The pathobiology of TDP-43 C-terminal fragments in ALS and FTLD. Front Neurosci 13:1–27

    Article 

    Google Scholar
     

  • Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF (2016) P62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol Biol Lett 21:1–14

    Article 
    CAS 

    Google Scholar
     

  • Ichimura Y, Komatsu M (2022) Considering the mechanism by which droplets of ALS-FTD-associated SQSTM1/p62 mutants cause pathology. Autophagy Rep 1:9–13

    Article 
    CAS 

    Google Scholar
     

  • Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackenzie IRA, Frick P, Neumann M (2014) The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol 127:347–357

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper-Knock J, Hewitt C, Highley JR, Brockington A, Milano A, Man S, Martindale J, Hartley J, Walsh T, Gelsthorpe C et al (2012) Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain 135:751–764

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramos-Campoy O, Ávila-Polo R, Grau-Rivera O, Antonell A, Clarimón J, Rojas-García R, Charif S, Santiago-Valera V, Hernandez I, Aguilar M et al (2018) Systematic screening of ubiquitin/p62 aggregates in cerebellar cortex expands the neuropathological phenotype of the C9orf72 expansion mutation. J Neuropathol Exp Neurol 77:703–709

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amaravadi RK, Winkler JD (2012) Lys05: a new lysosomal autophagy inhibitor. Autophagy 8:1383–1384

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laflamme C, McKeever P, Kumar R, Schwartz J, Kolahdouzan M, Chen CX-Q, You Z, Benaliouad F, Gileadi O, McBride HM, et al (2019) Implementation of an antibody validation procedure: application to the major ALS/FTD disease gene C9ORF72. Elife 499350

  • O’Rourke JG, Bogdanik L, Yáñez A, Lall D, Wolf AJ, Muhammad AKMG, Ho R, Carmona S, Vit JP, Zarrow J, et al (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science (80-) 351:1324–1329

  • Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, Myszczynska MA, Higginbottom A, Walsh MJ, Whitworth AJ et al (2016) The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35:1656–1676

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL, Varela MA, Sathyaprakash C, Scaber J, Barbagallo P et al (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140:887–897

    Article 
    PubMed 

    Google Scholar
     

  • Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D, Smolka MB, Hu F (2016) The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:51

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RAK, Levina V, Halloran MA, Gleeson PA, Blair IP, Soo KY et al (2014) C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 23:3579–3595

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amick J, Roczniak-Ferguson A, Ferguson SM (2016) C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 27:3040–3051

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao W, Todd TW, Wu Y, Jones CY, Tong J, Jansen-west K, Daughrity LM, Park J, Koike Y, Kurti A, et al (2022) Two FTD-ALS genes converge on the endosomal pathway to induce TDP-43 pathology and degeneration. Science (80-) 99:94–99

  • Zhang C, Shang G, Gui X, Zhang X, Bai X, Chen ZJ (2019) Structural basis of STING binding with and phosphorylation by TBK1. Nature 567:394–398

  • Oakes JA, Davies MC, Collins MO (2017) TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain 10:1–10

    Article 

    Google Scholar
     

  • Liu G, Coyne AN, Pei F, Vaughan S, Chaung M, Zarnescu DC, Buchan JR (2017) Endocytosis regulates TDP-43 toxicity and turnover. Nat Commun 8

  • Barmada SJ, Serio A, Arjun A, Bilican B, Daub A, Ando DM, Tsvetkov A, Pleiss M, Li X, Peisach D et al (2014) Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol 10:677–685

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osaki T, Uzel SGM, Kamm RD (2018) Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci Adv 4:eaat5847

  • Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I, et al (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104

  • Kreiter N, Pal A, Lojewski X, Corcia P, Naujock M, Reinhardt P, Sterneckert J, Petri S, Wegner F, Storch A et al (2018) Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation. Neurobiol Dis 115:167–181

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujimori K, Ishikawa M, Otomo A, Atsuta N, Nakamura R, Akiyama T, Hadano S, Aoki M, Saya H, Sobue G et al (2018) Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med 24:1579–1589

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Özkan N, Koppers M, van Soest I, van Harten A, Jurriens D, Liv N, Klumperman J, Kapitein LC, Hoogenraad CC, Farías GG (2021) ER–lysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nat Commun 12:1–18

    Article 

    Google Scholar
     

  • Henry AG, Aghamohammadzadeh S, Samaroo H, Chen Y, Mou K, Needle E, Hirst WD (2015) Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet 24:6013–6028

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U et al (2013) A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 56:355–364

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Workman MJ, Lim RG, Wu J, Frank A, Ornelas L, Panther L, Galvez E, Perez D, Meepe I, Lei S, et al (2023) Large-scale differentiation of iPSC-derived motor neurons from ALS and control subjects. Neuron, 1–14

  • Masrori P, Bijnens B, Davie K, Kumar Poovathingal S, Storm A, Hersmus N, Fumagalli L, Van Den Bosch L, Fiers M, Thal R, et al (2022) Hexanucleotide repeat expansions in C9orf72 alter microglial responses and prevent a coordinated glial reaction in ALS. bioRxiv 2022

  • Banerjee P, Mehta AR, Nirujogi RS, Cooper J, Nanda J, Longden J, Burr K, Salzinger A, Newton J, Story D, et al (2023) Cell-autonomous immune dysfunction driven by disrupted autophagy in C9orf72 -ALS iPSC-derived microglia contributes to neurodegeneration. Sci Adv 2022.05.12.491675

  • Hess MW, Huber LA (2021) Measuring lysosomal size and frequency by electron microscopy. Methods Cell Biol 164:47–61

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rijal Upadhaya A, Capetillo-Zarate E, Kosterin I, Abramowski D, Kumar S, Yamaguchi H, Walter J, Fändrich M, Staufenbiel M, Thal DR (2012) Dispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice. Neurobiol Aging 33:2641–2660

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brooks BR, Miller RG, Swash M, Munsat TL (2000) El escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler 1:293–299

    CAS 

    Google Scholar
     

  • de Carvalho M, Dengler R, Eisen A, England JD, Kaji R, Kimura J, Mills K, Mitsumoto H, Nodera H, Shefner J et al (2008) Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol 119:497–503

    Article 
    PubMed 

    Google Scholar
     

  • De Carvalho M, Swash M (2009) Awaji diagnostic algorithm increases sensitivity of El Escorial criteria for ALS diagnosis. Amyotroph Lateral Scler 10:53–57

    Article 
    PubMed 

    Google Scholar
     

  • Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, Van Swieten JC, Seelaar H, Dopper EGP, Onyike CU et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Description of Image

    Source link