Scientific Papers

All-cause, cardiovascular disease and cancer mortality in the population of a large Italian area contaminated by perfluoroalkyl and polyfluoroalkyl substances (1980–2018) | Environmental Health

Description of Image

  • Gaines LGT. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): a literature review. Am J Ind Med. 2023;66:353–78.

    Article 
    CAS 

    Google Scholar
     

  • Xiao F, Golovko SA, Golovko MY. Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using UPLC-TOF-MSE high-resolution parent ion search. Anal Chim Acta. 2017;988:41–9.

    Article 
    CAS 

    Google Scholar
     

  • Manojkumar Y, Pilli S, Rao PV, Tyagi RD. Sources, occurrence and toxic effects of emerging per- and polyfluoroalkyl substances (PFAS). Neurotoxicol Teratol. 2023;97:107174.

    Article 
    CAS 

    Google Scholar
     

  • Ehsan MN, Riza M, Pervez MN, Khyum MMO, Liang Y, Naddeo V. Environmental and health impacts of PFAS: sources, distribution and sustainable management in North Carolina (USA). Sci Total Environ. 2023;878:163123.

    Article 
    CAS 

    Google Scholar
     

  • Zhang M, Zhao X, Zhao D, Soong TY, Tian S. Poly- and perfluoroalkyl substances (PFAS) in landfills: occurrence, transformation and treatment. Waste Manag. 2023;155:162–78.

    Article 
    CAS 

    Google Scholar
     

  • National Institute of Environmental Health Sciences. Perfluoroalkyl and polyfluoroalkyl substances (PFAS). 2023. https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm. Accessed 14 Feb 2024.

  • Li X, Fatowe M, Cui D, Quinete N. Assessment of per- and polyfluoroalkyl substances in Biscayne Bay surface waters and tap waters from South Florida. Sci Total Environ. 2022;806(Pt 1):150393.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Liang Y. Performance of different sorbents toward stabilizing per- and polyfluoroalkyl substances (PFAS) in soil. Environ Adv. 2022;8:100217.

    Article 
    CAS 

    Google Scholar
     

  • Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH. Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol. 2006;40:32–44.

    Article 
    CAS 

    Google Scholar
     

  • Davis KL, Aucoin MD, Larsen BS, Kaiser MA, Hartten AS. Transport of ammonium perfluorooctanoate in environmental media near a fluoropolymer manufacturing facility. Chemosphere. 2007;67:2011–9.

    Article 
    CAS 

    Google Scholar
     

  • Boulanger B, Vargo JD, Schnoor JL, Hornbuckle KC. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environ Sci Technol. 2005;39:5524–30.

    Article 
    CAS 

    Google Scholar
     

  • Schultz MM, Barofsky DF, Field JA. Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry: characterization of municipal wastewaters. Environ Sci Technol. 2006;40:289–95.

    Article 
    CAS 

    Google Scholar
     

  • Valsecchi S, Rusconi M, Mazzoni M, Viviano G, Pagnotta R, Zaghi C, et al. Occurrence and sources of perfluoroalkyl acids in Italian river basins. Chemosphere. 2015;129:126–34.

    Article 
    CAS 

    Google Scholar
     

  • Lei X, Lian Q, Zhang X, Karsili TK, Holmes W, Chen Y, et al. A review of PFAS adsorption from aqueous solutions: current approaches, engineering applications, challenges, and opportunities. Environ Pollut. 2023;321:121138.

    Article 
    CAS 

    Google Scholar
     

  • Šabović I, Cosci I, De Toni L, Ferramosca A, Stornaiuolo M, Di Nisio A, et al. Perfluoro-octanoic acid impairs sperm motility through the alteration of plasma membrane. J Endocrinol Investig. 2020;43:641–52.

    Article 

    Google Scholar
     

  • Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 2021;40:606–30.

    Article 
    CAS 

    Google Scholar
     

  • Gaballah S, Swank A, Sobus JR, Howey XM, Schmid J, Catron T, et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ Health Perspect. 2020;128:47005.

    Article 
    CAS 

    Google Scholar
     

  • Cluett R, Seshasayee SM, Rokoff LB, Rifas-Shiman SL, Ye X, Calafat AM, et al. Per- and polyfluoroalkyl substance plasma concentrations and bone mineral density in midchildhood: a cross-sectional study (project viva, United States). Environ Health Perspect. 2019;127:87006.

    Article 

    Google Scholar
     

  • Beglarian E, Costello E, Walker DI, Wang H, Alderete TL, Chen Z, et al. Exposure to perfluoroalkyl substances and longitudinal changes in bone mineral density in adolescents and young adults: a multi-cohort study. Environ Res. 2023;244:117611.

    Article 

    Google Scholar
     

  • Crawford L, Halperin SA, Dzierlenga MW, Skidmore B, Linakis MW, Nakagawa S, et al. Systematic review and meta-analysis of epidemiologic data on vaccine response in relation to exposure to five principal perfluoroalkyl substances. Environ Int. 2023;172:107734.

    Article 
    CAS 

    Google Scholar
     

  • von Holst H, Nayak P, Dembek Z, Buehler S, Echeverria D, Fallacara D, et al. Perfluoroalkyl substances exposure and immunity, allergic response, infection, and asthma in children: review of epidemiologic studies. Heliyon. 2021;7:e08160.

    Article 

    Google Scholar
     

  • Ojo AF, Peng C, Ng JC. Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environ Pollut. 2020;263:Pt B:114182.

    Article 

    Google Scholar
     

  • Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010;118:197–202.

    Article 
    CAS 

    Google Scholar
     

  • Winquist A, Steenland K. Perfluorooctanoic acid exposure and thyroid disease in community and worker cohorts. Epidemiol. 2014;25:255–64.

    Article 

    Google Scholar
     

  • Cardenas A, Gold DR, Hauser R, Kleinman KP, Hivert MF, Calafat AM, et al. Plasma concentrations of per- and polyfluoroalkyl substances at baseline and associations with glycemic indicators and diabetes incidence among high-risk adults in the diabetes prevention program trial. Environ Health Perspect. 2017;125:107001.

    Article 

    Google Scholar
     

  • Zhang C, Sundaram R, Maisog J, Calafat AM, Barr DB, Buck Louis GM. A prospective study of prepregnancy serum concentrations of perfluorochemicals and the risk of gestational diabetes. Fertil Steril. 2015;103:184–9.

    Article 
    CAS 

    Google Scholar
     

  • Darrow LA, Stein CR, Steenland K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the mid-Ohio Valley, 2005-2010. Environ Health Perspect. 2013;121:1207–13.

    Article 

    Google Scholar
     

  • Sonne C, Jenssen BM, Rinklebe J, Lam SS, Hansen M, Bossi R, et al. EU need to protect its environment from toxic per- and polyfluoroalkyl substances. Sci Total Environ. 2023;876:162770.

    Article 
    CAS 

    Google Scholar
     

  • Zahm S, Bonde JP, Chiu WA, Hoppin J, Kanno J, Abdallah M, et al. Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. Lancet Oncol. 2024;25:16–7.

    Article 
    CAS 

    Google Scholar
     

  • Steenland K, Winquist A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ Res. 2021;194:110690.

    Article 
    CAS 

    Google Scholar
     

  • Leonard RC, Kreckmann KH, Sakr CJ, Symons JM. Retrospective cohort mortality study of workers in a polymer production plant including a reference population of regional workers. Ann Epidemiol. 2008;18:15–22.

    Article 

    Google Scholar
     

  • C8 Science Panel. 2012. http://www.c8sciencepanel.org/prob_link.html. Accessed 14 Feb 2024.

  • Steenland K, Woskie S. Cohort mortality study of workers exposed to perfluorooctanoic acid. Am J Epidemiol. 2012;176:909–17.

    Article 

    Google Scholar
     

  • Vieira VM, Hoffman K, Shin HM, Weinberg JM, Webster TF, Fletcher T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect. 2013;121:318–23.

    Article 

    Google Scholar
     

  • Pitter G, Da Re F, Canova C, Barbieri G, Zare Jeddi M, Daprà F, et al. Serum levels of perfluoroalkyl substances (PFAS) in adolescents and young adults exposed to contaminated drinking water in the Veneto region, Italy: a cross-sectional study based on a health surveillance program. Environ Health Perspect. 2020;128:27007.

    Article 
    CAS 

    Google Scholar
     

  • Zaghi C, Serrini G. Il progetto di ricerca per la valutazione del rischio ambientale e sanitario associato alla contaminazione da sostanze perfluoroalchiliche (PFAS) nei principali bacini fluviali italiani. https://www.mase.gov.it/sites/default/files/archivio/allegati/reach/Zaghi_PFAS.pdf. Accessed 14 Feb 2024.

  • Polesello S, Pagnotta R, Marziali L, Patrolecco L, Rusconi M, Stefani F, et al. Realizzazione di uno studio di valutazione del rischio ambientale e sanitario associato alla contaminazione da sostanze perfluoro-alchiliche (PFAS) nel Bacino del Po e nei principali bacini fluviali italiani. 2013. https://www.mase.gov.it/sites/default/files/archivio/allegati/reach/progettoPFAS_ottobre2013.pdf. Accessed 14 Feb 2024.

  • Regione del Veneto. PFAS. Popolazione esposta. https://www.regione.veneto.it/web/sanita/pfas-popolazione-esposta. Accessed 14 Feb 2024.

  • Polesello S, Valsecchi S. Rischio associate alla presenza di sostanze perfluoro-alchiliche (PFAS) nelle acque potabili e nei corpi idrici recettori di aree industriali nella Provincia di Vicenza e aree limitrofe. IRSA—CNR. 2013. https://sian.aulss9.veneto.it/index.cfm?action=mys.apridoc&iddoc=803. Accessed 14 Feb 2024.

  • Girardi P, Merler E. A mortality study on male subjects exposed to polyfluoroalkyl acids with high internal dose of perfluorooctanoic acid. Environ Res. 2019;179:Pt A:108743.

    Article 

    Google Scholar
     

  • Regione del Veneto, Area Sanità e Sociale, Direzione Prevenzione, Sicurezza Alimentare, Veterinaria. Life Phoenix. Novel tools for an integrated governance of pollution from perfluorinated compounds. Lessons from the Life Phoenix Project 2021. https://www.lifephoenix.eu/documents/180306/512516/Life_Phoenix_Final_Publication_ENG.pdf/789fd6bf-7642-c81b-a17f-625aa9a9318c?t=1636100899122. Accessed 14 Feb 2024.

  • Regione del Veneto. Deliberazione della Giunta Regionale n. 691 del 21 maggio 2018. Modifica del “Piano di sorveglianza sulla popolazione esposta alle sostanze perfluoroalchiliche”, di cui all’Allegato A alla DGR n. 2133 del 23 dicembre 2016. Bollettino Ufficiale della Regione del Veneto n. 52 del 29 maggio 2018.

  • Istituto Nazionale di Statistica. Demo Istat 2024. https://demo.istat.it/. Accessed 14 Feb 2024.

  • Regione del Veneto. Definizione delle aree d’impatto dell’inquinamento da sostanze perfluoroalchiliche (PFAS). 691_AllegatoA_370611.pdf. 2018. https://bur.regione.veneto.it/BurvServices/Pubblica/DettaglioDgr.aspx?id=370611. Accessed 14 Feb 2024.

  • PFAS.LAND. Il GIS di PFAS.LAND. La prima mappa digitale navigabile sui PFAS. 2019. https://pfas.land/2019/04/10/12-aprile-2019-il-gis-di-pfas-land-la-prima-mappa-digitale-navigabile-sui-pfas-uno-straordinario-strumento-popolare-per-capire-quanto-siamo-inquinati-attingendo-ai-dati-dellarpav/. Accessed 14 Feb 2024.

  • Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto. Stima dei tempi di propagazione dell’inquinamento da sostanze perfluoroalchiliche (PFAS) nelle acque sotterranee in provincia di Vicenza, Padova e Verona 2016. https://www.arpa.veneto.it/arpav/chi-e-arpav/file-e-allegati/pfas/nt_0516_stima_tempi_propagazione_pfas_nella_acque_sotterranee_v04.pdf/@@display-file/file. Accessed 14 Feb 2024.

  • Regione del Veneto. Deliberazione della Giunta Regionale n. 2133 del 23 dicembre 2016. Approvazione del “Piano di sorveglianza sanitaria sulla popolazione esposta alle sostanze perfluoroalchiliche (PFAS) in alcuni ambiti della Regione del Veneto”. Bollettino Ufficiale della Regione del Veneto n. 4 del 5 gennaio 2017.

  • Istituto Superiore di Sanità. Contaminazione da sostanze perfluoroalchiliche in Veneto. Valutazione dell’esposizione alimentare e caratterizzazione del rischio. 2019. https://www.sivempveneto.it/wp-content/uploads/2019/07/Relazione-PFAS_ISS-2019_finale.pdf. Accessed 14 Feb 2024.

  • Agrimi U, Patriarca V, Purificato I. Contributi del Dipartimento di Sicurezza alimentare, nutrizione e sanità pubblica veterinaria per un approccio One Health. Rapporti ISTISAN 21/11. Roma: Istituto Superiore di Sanità; 2021.


    Google Scholar
     

  • Rapporti ISTISAN. Errata corrige. Contributi del Dipartimento di Sicurezza alimentare, nutrizione e sanità pubblica veterinaria per un approccio One Health. A cura di Umberto Agrimi, Valeria Patriarca, Ivana Purificato. 2021, iii, 68 p. 2021. https://www.iss.it/documents/20126/6682486/errata+corrige+21_11.pdf/cf99996a-958e-6ef2-5621-069482509ccb?t=1670409005848. Accessed 14 Feb 2024.

  • Zamboni M, Fin G, Scatton N, Facciolo L, Stoppa G, Catelan D, et al. Perfluoroalchilic food contamination in the PFAS high-risk area of the Veneto region (northern Italy). Epidemiol Prev. 2021;45:387–94.


    Google Scholar
     

  • Ingelido AM, Abballe A, Gemma S, Dellatte E, Iacovella N, De Angelis G, et al. Biomonitoring of perfluorinated compounds in adults exposed to contaminated drinking water in the Veneto region. Italy Environ Int. 2018;110:149–59.

    Article 
    CAS 

    Google Scholar
     

  • Regione del Veneto. Piano di sorveglianza sanitaria sulla popolazione esposta a PFAS. Rapporto n. 17. Maggio 2023. 2023. https://elezioni.regione.veneto.it/documents/10793/12935055/Bollettino+PFAS+n.+17+-+maggio+2023.pdf/95cd8c4c-8790-4725-b5b0-f3cd089b51cc. Accessed 14 Feb 2024.

  • Perrow C. Normal accidents: living with high risk technologies. Updated ed. Princeton (NJ): Princeton University Press; 1999.


    Google Scholar
     

  • Mazzanti M, Montini A. The determinants of residential water demand: empirical evidence for a panel of Italian municipalities. Applied Econ Lett. 2006;13:107–11.

    Article 

    Google Scholar
     

  • Romano G, Salvati N, Guerrini A. Estimating the determinants of residential water demand in Italy. Water. 2014;6:2929–45.

    Article 

    Google Scholar
     

  • Powell-Wiley TM, Baumer Y, Baah FO, Baez AS, Farmer N, Mahlobo CT, et al. Social determinants of cardiovascular disease. Circ Res. 2022;130:782–99.

    Article 
    CAS 

    Google Scholar
     

  • World Health Organization. International classification of diseases, 9th revision. Geneva: World Health Organization; 1978.


    Google Scholar
     

  • World Health Organization. International statistical classification of diseases and related health problems, 10th revision, vol. 1. 5th ed. Geneva: World Health Organization; 2016.


    Google Scholar
     

  • Clayton D, Schifflers E. Models for temporal variation in cancer rates. I: age-period and age-cohort models. Stat Med. 1987;6:449–67.

    Article 
    CAS 

    Google Scholar
     

  • Clayton D, Schifflers E. Models for temporal variation in cancer rates. II: age-period-cohort models. Stat Med. 1987;6:469–81.

    Article 
    CAS 

    Google Scholar
     

  • Oehlert GW. A note on the delta method. Am Stat. 1992;46:27–9.

    Article 

    Google Scholar
     

  • Breslow NE, Day NE. Statistical methods in cancer research, vol. II. The design and analysis of cohort studies. Lyon: International Agency for Research on Cancer; 1986.


    Google Scholar
     

  • Bray F, Richiardi L, Ekbom A, Pukkala E, Cuninkova M, Møller H. Trends in testicular cancer incidence and mortality in 22 European countries: continuing increases in incidence and declines in mortality. Int J Cancer. 2006;118:3099–111.

    Article 
    CAS 

    Google Scholar
     

  • Berg V, Nøst TH, Huber S, Rylander C, Hansen S, Veyhe AS, et al. Maternal serum concentrations of per- and polyfluoroalkyl substances and their predictors in years with reduced production and use. Environ Int. 2014;69:58–66.

    Article 
    CAS 

    Google Scholar
     

  • Hall SM, Zhang S, Hoffman K, Miranda ML, Stapleton HM. Concentrations of per- and polyfluoroalkyl substances (PFAS) in human placental tissues and associations with birth outcomes. Chemosphere. 2022;295:133873.

    Article 
    CAS 

    Google Scholar
     

  • van Beijsterveldt IALP, van Zelst BD, van den Berg SAA, de Fluiter KS, van der Steen M, Hokken-Koelega ACS. Longitudinal poly- and perfluoroalkyl substances (PFAS) levels in Dutch infants. Environ Int. 2022;160:107068.

    Article 

    Google Scholar
     

  • EFSA panel on contaminants in the food chain (EFSA CONTAM panel). Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020;18:e06223.

  • Fitz-Simon N, Fletcher T, Luster MI, Steenland K, Calafat AM, Kato K, et al. Reductions in serum lipids with a 4-year decline in serum perfluorooctanoic acid and perfluorooctanesulfonic acid. Epidemiol. 2013;24:569–76.

    Article 

    Google Scholar
     

  • Canova C, Barbieri G, Zare Jeddi M, Gion M, Fabricio A, Daprà F, et al. Associations between perfluoroalkyl substances and lipid profile in a highly exposed young adult population in the Veneto region. Environ Int. 2020;145:106117.

    Article 
    CAS 

    Google Scholar
     

  • Canova C, Di Nisio A, Barbieri G, Russo F, Fletcher T, Batzella E, et al. PFAS concentrations and cardiometabolic traits in highly exposed children and adolescents. Int J Environ Res Public Health. 2021;18:12881.

    Article 
    CAS 

    Google Scholar
     

  • Zare Jeddi M, Dalla Zuanna T, Barbieri G, Fabricio ASC, Daprà F, Fletcher T, et al. Associations of perfluoroalkyl substances with prevalence of metabolic syndrome in highly exposed young adult community residents: a cross-sectional study in Veneto region, Italy. Int J Environ Res Public Health. 2021;18:1194.

    Article 

    Google Scholar
     

  • Liu G, Zhang B, Hu Y, Rood J, Liang L, Qi L, et al. Associations of perfluoroalkyl substances with blood lipids and apolipoproteins in lipoprotein subspecies: the POUNDS-lost study. Environ Health. 2020;19:5.

    Article 
    CAS 

    Google Scholar
     

  • Haug M, Dunder L, Lind PM, Lind L, Salihovic S. Associations of perfluoroalkyl substances (PFAS) with lipid and lipoprotein profiles. J Expo Sci Environ Epidemiol. 2023;33:757–65.

    Article 
    CAS 

    Google Scholar
     

  • Bertazzi PA, Bernucci I, Brambilla G, Consonni D, Pesatori AC. The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect. 1998;106(Suppl 2):625–33.

    Article 
    CAS 

    Google Scholar
     

  • Sullivan D, Schmitt HJ, Calloway EE, Clausen W, Tucker P, Rayman J, et al. Chronic environmental contamination: a narrative review of psychosocial health consequences, risk factors, and pathways to community resilience. Soc Sci Med. 2021;276:113877.

    Article 

    Google Scholar
     

  • Zamperini A. Ambiente e violenza. In: Menegatto M, editor. Zamperini A. Cattive acque. Contaminazione ambientale e comunità violate. Padova: Padova University Press; 2021. p. 21–52.


    Google Scholar
     

  • Menegatto M, Lezzi S, Musolino M, Zamperini A. The psychological impact of per- and poly-fluoroalkyl substances (PFAS) pollution in the Veneto region, Italy: a qualitative study with parents. Int J Environ Res Public Health. 2022;19:14761.

    Article 
    CAS 

    Google Scholar
     

  • Hastrup JL, Thomas SN, Edelstein M. Fear of cancer in a rural Appalachian community following notification of an environmental hazard. In: Edelstein MR, Tysiachniouk M, editors. Smirnova LV, editors. Bingley: Emerald Group Publishing Limited; 2007. p. 93–115.


    Google Scholar
     

  • O’Donnell CJ, Schwartz Longacre L, Cohen BE, Fayad ZA, Gillespie CF, Liberzon I, et al. Posttraumatic stress disorder and cardiovascular disease: state of the science, knowledge gaps, and research opportunities. JAMA Cardiol. 2021;6:1207–16.

    Article 

    Google Scholar
     

  • Gray JD, Kogan JF, Marrocco J, McEwen BS. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol. 2017;13:661–73.

    Article 
    CAS 

    Google Scholar
     

  • Guidi J, Lucente M, Sonino N, Fava GA. Allostatic load and its impact on health: a systematic review. Psychother Psychosom. 2021;90:11–27.

    Article 

    Google Scholar
     

  • Gee GC, Payne-Sturges DC. Environmental health disparities: a framework integrating psychosocial and environmental concepts. Environ Health Perspect. 2004;112:1645–53.

    Article 

    Google Scholar
     

  • Roth K, Petriello MC. Exposure to per- and polyfluoroalkyl substances (PFAS) and type 2 diabetes risk. Front Endocrinol (Lausanne). 2022;13:965384.

    Article 

    Google Scholar
     

  • Conway B, Innes KE, Long D. Perfluoroalkyl substances and beta cell deficient diabetes. J Diabetes Complicat. 2016;30:993–8.

    Article 

    Google Scholar
     

  • Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and nutrition examination survey. Environ Health Perspect. 2010;118:686–92.

    Article 
    CAS 

    Google Scholar
     

  • Xu Y, Jakobsson K, Harari F, Andersson EM, Li Y. Exposure to high levels of PFAS through drinking water is associated with increased risk of type 2 diabetes-findings from a register-based study in Ronneby. Sweden Environ Res. 2023;225:115525.

    Article 
    CAS 

    Google Scholar
     

  • Hajar R. Statins: past and present. Heart Views. 2011;12:121–7.

    Article 

    Google Scholar
     

  • Center for drug evaluation and research application number: 200153Orig1s000. Pharmacology Review(s) 2012. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/200153Orig1s000PharmR.pdf. Accessed 14 Feb 2024.

  • Steenland K, Fletcher T, Stein CR, Bartell SM, Darrow L, Lopez-Espinosa MJ, et al. Review: evolution of evidence on PFOA and health following the assessments of the C8 science panel. Environ Int. 2020;145:106125.

    Article 
    CAS 

    Google Scholar
     

  • Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ Health Perspect. 2014;122:1299–305.

    Article 

    Google Scholar
     

  • Mastrantonio M, Bai E, Uccelli R, Cordiano V, Screpanti A, Crosignani P. Drinking water contamination from perfluoroalkyl substances (PFAS): an ecological mortality study in the Veneto region. Italy Eur J Public Health. 2018;28:180–5.

    Article 

    Google Scholar
     

  • Catelan D, Biggeri A, Bucchi L, Manno V, Pappagallo M, Stoppa G, et al. Epidemiologic transition of lung cancer mortality in Italy by sex, province of residence and birth cohort (1920-1929 to 1960-1969). Int J Cancer. 2023;153:1746–57.

    Article 
    CAS 

    Google Scholar
     

  • Steenland K, Hofmann JN, Silverman DT, Bartell SM. Risk assessment for PFOA and kidney cancer based on a pooled analysis of two studies. Environ Int. 2022;167:107425.

    Article 
    CAS 

    Google Scholar
     

  • Winquist A, Hodge JM, Diver WR, Rodriguez JL, Troeschel AN, Daniel J, et al. Case-cohort study of the association between PFAS and selected cancers among participants in the American Cancer Society’s Cancer prevention study II LifeLink cohort. Environ Health Perspect. 2023;131:127007.

    Article 

    Google Scholar
     

  • Shearer JJ, Callahan CL, Calafat AM, Huang WY, Jones RR, Sabbisetti VS, et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J Natl Cancer Inst. 2021;113:580–7.

    Article 

    Google Scholar
     

  • National Institute of Environmental Health Sciences. NTP toxicology and carcinogenesis studies of tetrafluoroethylene (CAS no. 116–14-3) in F344/N rats and B6C3F1 mice (inhalation studies). National Toxicology Program technical report 450. Research Triangle Park: National Institute of Environmental Health Sciences; 1997.

  • Lee BS, Kim Y, Park H, Im WJ, Han HY, Kim YB, et al. Long-chain perfluoroalkyl carboxylates induce cytoskeletal abnormalities and activate epithelial-mesenchymal transition in both renal cell carcinoma 3D cultures and Caki-1 xenografted mouse model. Environ Int. 2023;178:108093.

    Article 
    CAS 

    Google Scholar
     

  • Saugo M, Ioverno E, Olivieri A, Bertola F, Pasinato A, Ducatman A. PFOA and testis cancer in the Veneto Region (Italy). Environ Health. 2024;23:33.

    Article 

    Google Scholar
     

  • Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121:1313–8.

    Article 

    Google Scholar
     

  • Purdue MP, Rhee J, Denic-Roberts H, McGlynn KA, Byrne C, Sampson J, et al. A nested case-control study of serum per- and polyfluoroalkyl substances and testicular germ cell tumors among U.S. air Force servicemen. Environ Health Perspect. 2023;131:77007.

    Article 
    CAS 

    Google Scholar
     

  • ATSDR. Toxicological profile for perfluoroalkyls. 2021. https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf. Accessed 14 Feb 2024.

  • Bartell SM, Vieira VM. Critical review on PFOA, kidney cancer, and testicular cancer. J Air Waste Manag Assoc. 2021;71:663–79.

    Article 
    CAS 

    Google Scholar
     

  • Chovanec M, Cheng L. Advances in diagnosis and treatment of testicular cancer. BMJ. 2022;379:e070499.

    Article 

    Google Scholar
     

  • Bertuccio P, Malvezzi M, Chatenoud L, Bosetti C, Negri E, Levi F, et al. Testicular cancer mortality in the Americas, 1980-2003. Cancer. 2007;109:776–9.

    Article 

    Google Scholar
     

  • Batzella E, Girardi P, Russo F, Pitter G, Da Re F, Fletcher T, et al. Perfluoroalkyl substance mixtures and cardio-metabolic outcomes in highly exposed male workers in the Veneto Region: a mixture-based approach. Environ Res. 2022;(212):Pt A:113225.

  • Dalla Zuanna T, Savitz DA, Barbieri G, Pitter G, Zare Jeddi M, Daprà F, et al. The association between perfluoroalkyl substances and lipid profile in exposed pregnant women in the Veneto region. Italy Ecotoxicol Environ Saf. 2021;209:111805.

    Article 
    CAS 

    Google Scholar
     

  • Szilagyi JT, Avula V, Fry RC. Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: a potential mechanistic role for placental peroxisome proliferator-activated receptors (PPARs). Curr Environ Health Rep. 2020;7:222–30.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Wang H, Du H, Fang H, Han M, Xu L, et al. Serum perfluoroalkyl substances in relation to lipid metabolism in Chinese pregnant women. Chemosphere. 2021;273:128566.

    Article 
    CAS 

    Google Scholar
     

  • De Toni L, Radu CM, Sabovic I, Di Nisio A, Dall’Acqua S, Guidolin D, et al. Increased cardiovascular risk associated with chemical sensitivity to perfluoro-octanoic acid: role of impaired platelet aggregation. Int J Mol Sci. 2020;21:399.

    Article 

    Google Scholar
     

  • Boscolo C, Mion F. Le acque sotterranee della pianura veneta. I risultati del Progetto SAMPAS. Padova: Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto; 2008.


    Google Scholar
     

  • Bertanza G, Capoferri GU, Carmagnani M, Icarelli F, Sorlini S, Pedrazzani R. Long-term investigation on the removal of perfluoroalkyl substances in a full-scale drinking water treatment plant in the Veneto region. Italy Sci Total Environ. 2020;734:139154.

    Article 
    CAS 

    Google Scholar
     

  • Goldenman G, Fernandes M, Holland M, Tugran T, Nordin A, Schoumacher C, et al. The cost of inaction. A socioeconomic analysis of environmental and health impacts linked to exposure to PFAS. Copenhagen: Nordisk Ministerråd; 2019.


    Google Scholar
     

  • Treatment and funding options for removing PFAS from drinking water. 2023. https://www.waterworld.com/drinking-water/treatment/article/14293065/treatment-and-funding-options-for-removing-pfas-from-drinking-water. Accessed 14 Feb 2024.

  • Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, et al. Toward a mechanistic understanding of poly- and perfluoroalkylated substances and cancer. Cancers (Basel). 2022;14:2919.

    Article 
    CAS 

    Google Scholar
     

  • Papadopoulou E, Stratakis N, Basagaña X, Brantsæter AL, Casas M, Fossati S, et al. Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts. Environ Int. 2021;157:106853.

    Article 
    CAS 

    Google Scholar
     

  • Description of Image

    Source link